Data Privacy Management 2010

Towards Knowledge Intensive Data Privacy

Vicenç Torra¹

September 23, 2010

 1 Institut d'Investigació en Intel·ligència Artificial (IIIA-CSIC)

Part of this work was done with G. Navarro-Arribas, I. Cano and D. Abril

Introduction

• Methods and tools for data privacy

Outline

	Outline
Introduction	
• The role of knowledge in data privacy:	
Summarization	
- Knowledge intensive data protection methods	
extending their application domain and simplifying its use.	
Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Data Privacy Management 201	0 5 / 74
Introduction	Outline
Πιτοαμετιση	
Some particular examples	
• Constrained data	
Semantic data protection	
 Knowledge-rich disclosure risk assessment 	

Introduction		Outli
• Edit constraints		
 and microaggregation 		
Vicenç Torra; Knowledge Intensive Data Privacy	Data Privacy Management 2010	12 /
Vicenç Torra; Knowledge Intensive Data Privacy Introduction	Data Privacy Management 2010	12 / Outl
Vicenç Torra; Knowledge Intensive Data Privacy Introduction	Data Privacy Management 2010	12 / Outl
Vicenç Torra; Knowledge Intensive Data Privacy Introduction	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some comparison 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	Data Privacy Management 2010	12 / Outl
 Vicenç Torra; Knowledge Intensive Data Privacy Introduction When data is edited, variables satisfy some co Application of masking methods, causes the violation of the constraints 	onstraints,	12 / Outl
Vicen; Torra; Knowledge Intensive Data Privacy Introduction • When data is edited, variables satisfy some co • Application of masking methods, causes the violation of the constraints	onstraints,	12 / Outl

- Disclosure Risk Measures (DR)
 - The smaller the risk, the better

However:

- IL and DR are in contradiction (Score = (IL + DR)/2)
- Good method, if a good score / trade-off

²Pierzchala, M. (1994) A review of the state of the art in automated data editing and imputation, in Statistical Data Editing, Vol. 1, Conference of European Statisticians Statistical Standards and Studies N. 44, United Nations Statistical Commission and Economic Commission for Europe, 10-40.

Data Privacy Management 2010 35 / 74

- x_1, \ldots, x_n records
- V_1, \ldots, V_m variables
- $-x_{i,j}$: value of record x_i for variable V_j

- Microaggregation and linear constraints:

 - We also require reflexivity:

$$\mathbb{C}(x,\ldots,x)=x$$

Outline Microaggregation and the edit constraints Microaggregation and linear constraints: - Proposition 1. (proof based on Functional Equations⁴) \mathbb{C} a function satisfying $\mathbb{C}(\sum_{i=1}^{K} \alpha_i x_{1,i}, \dots, \sum_{i=1}^{K} \alpha_i x_{N,i}) = \sum_{i=1}^{K} \alpha_i \mathbb{C}(x_{1,i}, \dots, x_{N,i})$ for given values $\alpha_1, \ldots, \alpha_K$ ($\alpha_i \neq 0$) and arbitrary values $x_{i,j}$ for $1 \leq i \leq N$ and $1 \leq j \leq K$, and reflexivity $\mathbb{C}(x,\ldots,x) = x$ Then, the most general solution for $\mathbb C$ is a function of the form $\mathbb{C}(x_1,\ldots,x_N) = \sum_{i=1}^N \kappa_i x_i$ for κ_i such that $\sum_{i=1}^N \kappa_i = 1$ but otherwise arbitrary. ⁴Aczél, J. (1987) A Short Course on Functional Equations; J. Aczél (1966) Lectures on Functional Equations and their Applications, Academic Press. Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 46 / 74 Outline

Microaggregation and the edit constraints

- Microaggregation and linear constraints:
 - Proposition 2.

 \mathbb{C} as before, but valid for all $\alpha_1, \ldots, \alpha_K$ ($\alpha_i \neq 0$):

Same result:

Then, the most general solution for $\ensuremath{\mathbb{C}}$ is a function of the form

$$\mathbb{C}(x_1,\ldots,x_N) = \sum_{i=1}^N \kappa_i x_i$$

for κ_i such that $\sum_{i=1}^N \kappa_i = 1$ but otherwise arbitrary.

- Microaggregation and linear constraints:
 - The only valid operator is a weighted mean
 - So the arithmetic mean is valid for $V = V_1 + V_2$ (i.e., WM with $\kappa_i = 1/3$)

V	V_1	V_2
3	1	2
6	0	6
8	2	6
17/3	3/3	14/3

- Microaggregation and linear constraints:
 - The number of elements in each partition element is not known
 - So, it is difficult to define a priori weights κ_i
 - In addition, the order of the elements should be irrelevant
- An alternative: if $x_1 = x_2$, define $\kappa(x_1) = \kappa(x_2)$
 - According to Prop. 1, κ should be the same for all variables
 - The approach in most clustering algorithms follows this approach
 - E.g. in Fuzzy *c*-means for records x_1, \ldots, x_N with memberships to the cluster equal to μ_1, \ldots, μ_N , $\rightarrow \underset{m}{\text{define}}$

$$\kappa_i = \frac{(\mu_i)^m}{\sum_{k=1}^n (\mu_k)^m}$$

and then use the function \mathbb{C} .

- This definition satisfies Prop. 1

- Microaggregation and nonlinear constraints:
 - Results similar to the linear case (Propositions 5 and 6):
 - * Same function $\mathbb C$ when arbitrary $lpha_1,\ldots,lpha_K$
 - * Equal weights when symmetry is added:

$$\mathbb{C}(x_1,\ldots,x_N) = \prod_{i=1}^N x_i^{1/N}$$

- Simple formulation: data define an interval
 - * Cluster representative in the interval defined between the minimum and the maximum of the elements in the cluster (internality).

$$\min x_i \leq \mathbb{C}(x_1, \dots, x_N) \leq \max_i$$

- Proposition 7. Adding internality to Proposition 1:

$$\mathbb{C}(x_1,\ldots,x_N) = \sum_{i=1}^N \kappa_i x_i$$

for κ_i such that $\sum_{i=1}^N \kappa_i = 1$ and $\kappa_i \ge 0$ but otherwise arbitrary.

One variable governs another one. Results:

a) We assume that V₁ and V₂ are microaggregated together.
b) If data has already been edited,
x_{i,1} ≤ x_{i,2} for all records i

c) So, the condition can be formalized as:

if x_{i,1} ≤ x_{i,2} for all records i, then
C(x_{1,1},...,x_{N,1}) ≤ C(x_{1,2},...,x_{N,2})

That is, C is monotonic.

Proposition (solutions) (and the particular cases: κ_i = 1/N):

C(x₁,...,x_N) = ∑_{i=1}^N κ_ix_i C(x₁,...,x_N) = ∏_{i=1}^N κ_ix_i C(x₁,...,x_N) = ∏_{i=1}^N κ_ix_i
C(x₁,...,x_N) = ∏_{i=1}^N κ_i κ_i = 1 and κ_i ≥ 0

- Example:
 - Census Data set: 1080 records, 13 numerical variables
 - Scenario 1: constraints are considered
 - Scenario 2: constraints are ignored

Outline

Implementation and Example (III)

Scenario 1					Sc	enario 2	
k	PIL	DR	SCORE	k	PIL	DR	SCORE
2	30.305	51.128	40.716	2	34.418	32.986	33.702
3	36.251	42.374	39.312	3	41.462	26.293	33.878
4	40.004	36.897	38.450	4	46.678	22.600	34.639
5	42.188	33.360	37.774	5	49.145	20.024	34.584
9	48.379	27.024	37.702	9	55.568	14.843	35.206
10	48.484	25.962	37.223	10	56.375	14.046	35.210
15	52.485	22.620	37.553	15	58.735	11.660	35.197
20	54.542	20.493	37.517	20	60.383	10.265	35.324
25	56.523	18.643	37.583	25	61.655	8.764	35.210
30	58.164	16.866	37.515	30	62.753	7.886	35.320
35	59.621	15.233	37.427	35	63.656	7.506	35.581
40	59.870	14.364	37.117	40	64.436	6.640	35.538
45	61.251	13.642	37.446	45	65.368	6.570	35.783
70	67.038	10.125	38.581	70	67.453	4.967	36.210

Vicenç Torra; Knowledge Intensive Data Privacy

Data Privacy Management 2010 70 / 74

Outline

Conclusions

Conclusions

• Microaggregation is specially suited when constraints are considered

• Analysis of the approaches when defining the centroids

Vicenç Torra; Knowledge Intensive Data Privacy

Data Privacy Management 2010 72 / 74

Outline

Advertisement (SPAM)

