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Part of this work was done with G. Navarro-Arribas, I. Cano and D. Abril

Outline

Introduction

• Methods and tools for data privacy

Data Privacy Management 2010 1 / 74



Outline

Introduction

• Methods and tools for data privacy

... introducing knowledge in these tools

Data Privacy Management 2010 1 / 74

Outline

Introduction

• Methods and tools for data privacy

... introducing knowledge in these tools

⇒ extensive use of additional knowledge in

• disclosure risk assessment

• data protection
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Outline

Introduction

• The role of knowledge in data privacy

– Existing tools use only limited information

∗ The file to be protected in data protection

∗ Original and protected files in risk assessment

– However, privacy depends on the context

and about the available information to intruders

⇒ Need of adding the semantic context
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Outline

Introduction

• The role of knowledge in data privacy

– Knowledge in data protection

∗ Explicit representation of knowledge related to the data

◦ protected data should satisfy the data models

→ negative ages

◦ protected data should permit meanginful analysis

→ random generalization of ZIP codes or cities

∗ Semantic deepth of categorical data

◦ protection methods should take into account the semantics
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Outline

Introduction

• The role of knowledge in data privacy

– Knowledge in risk assessment

∗ Consideration of related databases (with different schemas)

∗ Consideration of related information from e.g. the web

◦ schema matching, database integration technologies,

ontologies, ontology matching, ...

→ otherwise unlinkable databases: no risk detected
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Outline

Introduction

• The role of knowledge in data privacy:

Summarization
– Knowledge intensive data protection methods

improves the quality of the protected data,

extending their application domain and simplifying its use.

Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 5 / 74

Outline

Introduction

Some particular examples
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• Semantic data protection

• Knowledge-rich disclosure risk assessment
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Introduction

Some particular examples

• Constrained data

– age is positive

– total income is the sum of basic salary plus incentives

◦ protection procedures compliant with the constraints
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Some particular examples

• Semantic data protection

– Terms in natural language have some semantic meaning.
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Outline

Introduction

Some particular examples

• Semantic data protection

– Terms in natural language have some semantic meaning.

◦ protection methods using ontologies

→ methods for k-anonymity using dendrograms of categories

→ microaggregation using ontologies

(e.g. Wordnet or open directory project)
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Outline

Introduction

Some particular examples

• Knowledge-rich disclosure risk assessment

– Record linkage is a versatile tool for measuring disclosure risk

⇒ even applicable to synthetic data

◦ New approaches for record linkage in new scenarios:

→ Record linkage for intruder’s file with a different scheme / data

→ Record linkage taking into account how data has been protected

→ Supervised record linkage, and parameter determination
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Introduction

Some particular examples

• Constrained data → microaggregation
• Semantic data protection

• Knowledge-rich disclosure risk assessment
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Constrained Data
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Introduction

• Edit constraints

• ... and microaggregation
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Outline

Introduction

• When data is edited, variables satisfy some constraints,

• Application of masking methods,

... causes the violation of the constraints
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Outline

Introduction

• Is microaggregation appropriate ?

• Constrained microaggregation.

→ suitability

→ characterization (options) for microaggregation
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Outline

Outline

Outline

• Introduction

• Motivation

• Microaggregation

• Edit constraints
• Microaggregation and Edit Constraints

– Linear Constraints
– Nonlinear Constraints
– Constraints on the Values
– One variable governs another
– Restriction on the values

• Implementation and Example

• Conclusions
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Motivation Outline

Data Privacy (I)

Data Privacy:

• Data is perturbated before publication

• Perturbation: minimal to maintain data utility (information loss)

• Perturbation: but enough to ensure data privacy

Measures:

• Information Loss or Data Utility Measures (IL)

– The smaller the loss, the better

• Disclosure Risk Measures (DR)

– The smaller the risk, the better

However:

• IL and DR are in contradiction (Score = (IL + DR)/2)

• Good method, if a good score / trade-off
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Motivation Outline

Data Privacy (II)

Methods for Data Privacy:

• Different methods have been proposed for data privacy

– Perturbative methods

∗ Data is modified adding some noise

– Non-perturbative methods

∗ Data is modified but no noise is included

(e.g., change of granularity)

– Synthetic data generators

∗ Data is artificial (disclosure risk is not avoided)
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Motivation Outline

Data Privacy (III)

Methods for Data Privacy:

• Different methods have been proposed for data privacy

– Perturbative methods

∗ Microaggregation, rank swapping, ...

– Non-perturbative methods

∗ Suppression, top coding, most implementations for k-anonymity

– Synthetic data generators

∗ IPSO, Approach based on Fuzzy c-regression
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Motivation Outline

Data Privacy (IV)

Methods for Data Privacy:

• Comparison of the methods:
– U.S. Census Data Set: 1080 records, 13 variables
– Score of around 30 (http://www.ppdm.cat):
– Best performance: Microaggregation and rank swapping
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Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 20 / 74

Motivation Outline

Edit Constraints (I)

Constraints on the variables:

• Linear constraints:
– E.g.,

EC-LC1: net + tax = gross

• Usual approach:

– (i) edit data

– (ii) protect data

– (iii) edit again

(to correct problems in protected data:

some properties of the data protection method might be lost)

Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 21 / 74



Motivation Outline

Edit Constraints (II)

Constraints on the variables:

• Linear constraints:
– E.g.,

EC-LC1: net + tax = gross

• Is microaggregation appropriate ?
– Constrained microaggregation (to avoid new edition)

– How aggregation should be done (in a sound way)?

– Automate the process
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Outline

Microaggregation
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Microaggregation Outline

Microaggregation (I)

Microaggregation: Informal description

• (i) Build microclusters

• (ii) aggregate the records,

• (iii) replace records by aggregates

◦ Privacy is ensured requiring k records in each cluster

◦ Low information loss as clusters are small
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Microaggregation Outline

Microaggregation (II)

Microaggregation: A formal description

• Notation.

· uij ∈ {0, 1} a partition: uij = 1
iff record j is assigned to the ith cluster.

· vi represents the ith cluster

· k minimum number of records in a cluster, g number of clusters.

• Formalization.

Minimize SSE =
∑g

i=1

∑n
j=1 uij(d(xj, vi))2

Subject to
∑g

i=1 uij = 1 for all j = 1, . . . , n

2k ≥ ∑n
j=1 uij ≥ k for all i = 1, . . . , g

uij ∈ {0, 1}
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Microaggregation Outline

Microaggregation (III)

Microaggregation: Optimality

• Optimal NP hard for more than 2 variables

• Heuristic methods have been developed: MDAV

Microaggregation: Variations

• Fuzzy clustering-based Microaggregation:]

– Avoids some adhoc attacks from intruders
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Microaggregation Outline

Microaggregation (IV)

Microaggregation: The Operational approach.

• 1. Clustering:

Partition the set of records

→ each partition element should have at least k records

• 2. Cluster representatives (aggregation):

Compute a cluster representative for each cluster

• 3. Replacement:

Replace each record by its cluster representative
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Microaggregation Outline

Microaggregation (V)

Microaggregation: Discussion

• Microaggregation and k

– The larger the k, the smaller the risk.

– The larger the k, the larger the information loss.

for a trade-off between risk and information loss ⇒ find a good k
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Microaggregation Outline

Microaggregation (VI)

Microaggregation: Discussion

• Microaggregation and k-anonymity

– k-anonymity: k-indistinguishable records

– Satisfied when all variables microaggregated together

→ microaggregation on the R
m space

– Otherwise, in general, not satisfied.

– Example
Microaggregation of in terms of
data file microaggregation of and microaggregation of
(a1, a2, a3, a4) (a1, a2) (a3, a4)
(b1, b2, b3, b4) (b1, b2) (b3, b4)
(c1, c2, c3, c4) (c1, c2) (c3, c4)
. . .
(z1, z2, z3, z4) (z1, z2) (z3, z4)
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Outline

Edit Constraints
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Outline

Introduction

• Edit constraints

– A classification of the constraints

Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 31 / 74



Outline

Edit Constraints

• Constraints on the possible values.

– Values restricted to a predefined set

∗ Values in a interval:

EC-PV: age ∈ [0, 125]
– Generalizable for subsets of variables

∗ Values (v1, v2) in a subset of D1 × D2
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Outline

Edit Constraints

• One variable governs the possible values of another one

– The values of a variable v2 constrained by v1

∗ E.g., variable sex governing number of pregnacies

EC-GV1: If sex=male THEN number of pregnacies = 0

∗ or, e.g.1:

EC-GV2: IF age < 17 THEN gross income < mean income

∗ or, e.g.2

EC-GV3: harvested acres ≤ planted acres

1Shlomo, N., De Waal, T. (2008), Protection of micro-data subject to edit constraints against

statistical disclosure, Journal of Official Statistics 24:2 229-253.
2Pierzchala, M. (1994) A review of the state of the art in automated data editing and imputation, in

Statistical Data Editing, Vol. 1, Conference of European Statisticians Statistical Standards and Studies

N. 44, United Nations Statistical Commission and Economic Commission for Europe, 10-40.
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Outline

Edit Constraints

• Linear constraints.

– Some variables satisfy some linear relationships.

∗ E.g., gross in terms of net and tax

EC-LC1: net + tax = gross
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Outline

Edit Constraints

• Non-linear constraints.

– The relationship between variables is not linear.

∗ Relationship between applicable VAT Rate, price exc. VAT, and

retail price:

EC-NLC1:

price exc. VAT · (1.00 + applicable VAT Rate) = retail price

∗ Relationship between wage sum, hours paid for, and wage rate3:

EC-NLC2: wage sum = hours paid for · wage rate

3Gasemyr, S. (2005) Editing and imputation for the creation of a linked micro file from base registers

and other administrative data, Conference of European Statisticians, WP8.
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Outline

Edit Constraints

• Other types of constraints.

– E.g. constraints on categorical (ordinal or nominal) variables
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Outline

Edit Constraints

• Values are restricted to exist in the domain

– Values not only in the range but also exist in the data.

∗ E.g. ages really existing in the population

→ not enough to be in [0,125].

– A perturbative method applied to data with ages in [0,30] should not

lead to a file with a value equal to 50.

∗ Application in linked files.
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Outline

Microaggregation and Edit Constraints

Linear Constraints
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Outline

Microaggregation and the edit constraints

• Microaggregation can deal easily with edit constraints

• Notation:

– x1, . . . , xn records

– V1, . . . , Vm variables

– xi,j: value of record xi for variable Vj
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

– Assumption1: All the variables in the linear model are

microaggregated together.

– Assumption2: Steps 1, 2, and 3 of the operational approach can be

separated.

→ cluster representative for each cluster satisfying the constraint
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

– Assumption3: Linear constraint of the form V =
∑K

i=1 αiVi

– Naturally, the data also satisfies the constraints (i.e., the data were

already edited). I.e.,

xj =
∑K

i=1 αixj,i for all j.
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

C(x1, . . . , xN) C(x1,1, . . . , xN,1) . . . C(x1,K, . . . , xN,K)

– Assumption4: The cluster representative is a function of the data in

the cluster (each variable, independently): C
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

C(x1, . . . , xN) C(x1,1, . . . , xN,1) . . . C(x1,K, . . . , xN,K)

– From these assumptions, we require:

C(x1, . . . , xN) =
K∑

i=1

αiC(x1,i, . . . , xN,i)
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

C(x1, . . . , xN) C(x1,1, . . . , xN,1) . . . C(x1,K, . . . , xN,K)

– As xj =
∑N

i=1 αixj,i for all j in {1, . . . , N}, we write:

C(
K∑

i=1

αix1,i, . . . ,
K∑

i=1

αixN,i) =
K∑

i=1

αiC(x1,i, . . . , xN,i)
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Simplification on notation: V in terms of V1, . . . , VK

V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

C(x1, . . . , xN) C(x1,1, . . . , xN,1) . . . C(x1,K, . . . , xN,K)

– We also require reflexivity:

C(x, . . . , x) = x
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Proposition 1. (proof based on Functional Equations4)

C a function satisfying

C(
∑K

i=1 αix1,i, . . . ,
∑K

i=1 αixN,i) =
∑K

i=1 αiC(x1,i, . . . , xN,i)
for given values α1, . . . , αK (αi 	= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and

1 ≤ j ≤ K, and reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN) =
∑N

i=1 κixi

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.

4Aczél, J. (1987) A Short Course on Functional Equations; J. Aczél (1966) Lectures on Functional

Equations and their Applications, Academic Press.
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– Proposition 2.

C as before, but valid for all α1, . . . , αK (αi 	= 0):

Same result:

Then, the most general solution for C is a function of the form

C(x1, . . . , xN) =
∑N

i=1 κixi

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– The only valid operator is a weighted mean

– E.g., median is not valid for V = V1 + V2

V V1 V2

3 1 2

6 0 6

8 2 6

6 1 6

Vicenç Torra; Knowledge Intensive Data Privacy Data Privacy Management 2010 48 / 74

Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– The only valid operator is a weighted mean

– So the arithmetic mean is valid for V = V1 + V2

(i.e., WM with κi = 1/3)

V V1 V2

3 1 2

6 0 6

8 2 6

17/3 3/3 14/3
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– The number of elements in each partition element is not known

– So, it is difficult to define a priori weights κi

– In addition, the order of the elements should be irrelevant

• Proposition 3.

– If we add symmetry:

C(x1, . . . , xN) = C(xπ(1), . . . , xπ(N))
for an arbitrary permutation π, then the most general solution is

C(x1, . . . , xN) = (1/N)
∑N

i=1 xi
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Outline

Microaggregation and the edit constraints

• Microaggregation and linear constraints:

– The number of elements in each partition element is not known

– So, it is difficult to define a priori weights κi

– In addition, the order of the elements should be irrelevant

• An alternative: if x1 = x2, define κ(x1) = κ(x2)

– According to Prop. 1, κ should be the same for all variables

– The approach in most clustering algorithms follows this approach

– E.g. in Fuzzy c-means for records x1, . . . , xN with memberships to

the cluster equal to μ1, . . . , μN , → define

κi = (μi)
m

Pn
k=1(μk)m

and then use the function C.

– This definition satisfies Prop. 1
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Microaggregation and Edit Constraints

Nonlinear Constraints
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Outline

Microaggregation and the edit constraints

• Microaggregation and nonlinear constraints:

– We apply a similar approach:
V V1 · · · VK

x1 x1,1 . . . x1,K
... ... ...

xN xN,1 . . . xN,K

C(x1, . . . , xN) C(x1,1, . . . , xN,1) . . . C(x1,K, . . . , xN,K)

– Now,

C(x1, . . . , xN) =
∏K

i=1 C(x1,i, . . . , xN,i)αi

– If the original data satisfy this constraint (i.e., xj =
∏N

i=1 xαi
j,i),

C(
∏K

i=1 xαi
1,i, . . . ,

∏K
i=1 xαi

N,i) =
∏K

i=1 C(x1,i, . . . , xN,i)αi
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Outline

Microaggregation and the edit constraints

• Microaggregation and nonlinear constraints:

– Proposition 4.

C a function satisfying

C(
∏K

i=1 xαi
1,i, . . . ,

∏K
i=1 xαi

N,i) =
∏K

i=1 C(x1,i, . . . , xN,i)αi

for given values α1, . . . , αK (αi 	= 0) and arbitrary values xi,j for 1 ≤ i ≤ N and

1 ≤ j ≤ K, and reflexivity

C(x, . . . , x) = x

Then, the most general solution for C is a function of the form

C(x1, . . . , xN) =
∏N

i=1 xκi
i

for κi such that
∑N

i=1 κi = 1 but otherwise arbitrary.
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Outline

Microaggregation and the edit constraints

• Microaggregation and nonlinear constraints:

– Results similar to the linear case (Propositions 5 and 6):

∗ Same function C when arbitrary α1, . . . , αK

∗ Equal weights when symmetry is added:

C(x1, . . . , xN) =
∏N

i=1 x
1/N
i
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Microaggregation and Edit Constraints

Constraints on the Values
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Outline

Microaggregation and the edit constraints

• Linear constraints, and constraints on the values

– Simple formulation: data define an interval

∗ Cluster representative in the interval defined between the minimum

and the maximum of the elements in the cluster (internality).

min xi ≤ C(x1, . . . , xN) ≤ maxi

– Proposition 7. Adding internality to Proposition 1:

C(x1, . . . , xN) =
∑N

i=1 κixi

for κi such that
∑N

i=1 κi = 1 and κi ≥ 0 but otherwise arbitrary.
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Outline

Microaggregation and the edit constraints

• Nonlinear constraints, and constraints on the values

– Simple formulation: data define an interval

∗ Cluster representative in the interval defined between the minimum

and the maximum of the elements in the cluster (internality).

min xi ≤ C(x1, . . . , xN) ≤ maxi

– Proposition 8. Adding internality to Proposition 4:

C(x1, . . . , xN) =
∏N

i=1 xκi
i

for κi such that
∑N

i=1 κi = 1 and κi ≥ 0 but otherwise arbitrary.
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Outline

Microaggregation and Edit Constraints

One variable governs the possible values of another
variable
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Outline

Microaggregation and the edit constraints

• One variable governs another one

– We cannot constraint microaggregation so easily in this case.

– Study in a case by case basis.

– Examples (from 1st section):

EC-GV1: If sex=male THEN number of pregnacies = 0

EC-GV2: IF age < 17 THEN gross income < mean income

EC-GV3: harvested acres ≤ planted acres
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Outline

Microaggregation and the edit constraints

• One variable governs another one

– Study in a case by case basis: Case EC-GV3

EC-GV3: harvested acres ≤ planted acres

– General case for variables V1 and V2 (V1 ≤ V2):
V1 V2 · · · VK

x1,1 x1,2 . . . x1,K
... ... ...

xN,1 xN,2 . . . xN,K

C(x1,1, . . . , xN,1) C(x1,2, . . . , xN,2) . . . C(x1,K, . . . , xN,K)

– Assumptions and results ...
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Outline

Microaggregation and the edit constraints

• One variable governs another one

– General case for variables V1 and V2 (V1 ≤ V2):
V1 V2 · · · VK

x1,1 x1,2 . . . x1,K
... ... ...

xN,1 xN,2 . . . xN,K

C(x1,1, . . . , xN,1) C(x1,2, . . . , xN,2) . . . C(x1,K, . . . , xN,K)

– a) We assume that V1 and V2 are microaggregated together.

– b) If data has already been edited,

xi,1 ≤ xi,2 for all records i

– c) So, the condition can be formalized as:

if xi,1 ≤ xi,2 for all records i, then

C(x1,1, . . . , xN,1) ≤ C(x1,2, . . . , xN,2)
That is, C is monotonic.
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Outline

Microaggregation and the edit constraints

• One variable governs another one. Results:

– a) We assume that V1 and V2 are microaggregated together.

– b) If data has already been edited,

xi,1 ≤ xi,2 for all records i

– c) So, the condition can be formalized as:

if xi,1 ≤ xi,2 for all records i, then

C(x1,1, . . . , xN,1) ≤ C(x1,2, . . . , xN,2)
That is, C is monotonic.

• C in Prop. 3, 6, 7, 8 are monotonic. So, appropriate here.

• Proposition (solutions) (and the particular cases: κi = 1/N):

– C(x1, . . . , xN) =
∑N

i=1 κixi

– C(x1, . . . , xN) =
∏N

i=1 xκi
i

for κi such that
∑N

i=1 κi = 1 and κi ≥ 0
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Outline

Microaggregation and the edit constraints

• One variable governs another one

– Study in a case by case basis: Case EC-GV1 and EC-GV2

EC-GV1: If sex=male THEN number of pregnacies = 0

EC-GV2: IF age < 17 THEN gross income < mean income

– Partition the file (horizontally) and microaggregate each subset5.

EC-GV1: Partition X = {Π1, Π2},
Π1 with sex=male and Π2 with sex=female.

→ any function C s.t. C(0, . . . , 0) = 0 is appropriate

EC-GV2: Partition X = {Π1, Π2},
Π1 with age < 17 and Π2 with age ≥ 17.

→ any monotonic function C is appropriate

5Similar to: Shlomo, N., De Waal, T. (2008), Protection of micro-data subject to edit constraints

against statistical disclosure, Journal of Official Statistics 24:2 229-253.
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Outline

Microaggregation and Edit Constraints

Values are restricted to exist in the domain
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Outline

Microaggregation and the edit constraints

• Values are restricted to exist in the domain

– In previous propositions,

only possible when κi = 1 for a particular i.

– In general,

adding this constraint to previous propositions results into:

a overconstrained problem

→ i.e., no solution exists

– Considering this constraint but not the other,

any order statistic as e.g. the median6, or boolean max-min functions.

6as used in: Sande, G. (2002) Exact and approximate methods for data directed microaggregation in

one or more dimensions, Int. J. of Unc., Fuzz. and Knowledge Based Systems 10:5 459-476.
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Implementation and Example
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Outline

Implementation and Example (I)

• Specification of XML edit constraints as Schematron rules

– Data and rules in XML format are validated

– Rules are parsed to identify the type of edit constraint

– Microdata is processed accordingly

∗ Variables involved in an edit constraint are grouped together

∗ Appropriate microaggregate is then used
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Outline

Implementation and Example (II)

• Example:

– Census Data set: 1080 records, 13 numerical variables

– Scenario 1: constraints are considered

– Scenario 2: constraints are ignored
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Outline

Implementation and Example (III)

Scenario 1 Scenario 2

k PIL DR SCORE k PIL DR SCORE

2 30.305 51.128 40.716 2 34.418 32.986 33.702

3 36.251 42.374 39.312 3 41.462 26.293 33.878

4 40.004 36.897 38.450 4 46.678 22.600 34.639

5 42.188 33.360 37.774 5 49.145 20.024 34.584

9 48.379 27.024 37.702 9 55.568 14.843 35.206

10 48.484 25.962 37.223 10 56.375 14.046 35.210

15 52.485 22.620 37.553 15 58.735 11.660 35.197

20 54.542 20.493 37.517 20 60.383 10.265 35.324

25 56.523 18.643 37.583 25 61.655 8.764 35.210

30 58.164 16.866 37.515 30 62.753 7.886 35.320

35 59.621 15.233 37.427 35 63.656 7.506 35.581

40 59.870 14.364 37.117 40 64.436 6.640 35.538

45 61.251 13.642 37.446 45 65.368 6.570 35.783

70 67.038 10.125 38.581 70 67.453 4.967 36.210
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Conclusions
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Conclusions

• Microaggregation is specially suited when constraints are considered

• Analysis of the approaches when defining the centroids
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Outline

Advertisement (SPAM)
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Transactions on Data Privacy

• Transactions on Data Privacy

– Launched in 2008

– Three issues per year

– Indexed in ACM Digital Library, DBLP, MathSciNet, DOAJ

– Support by Catalan Assoc. on Artificial Intelligence (ECCAI member)

and the Unesco Chair on Data Privacy

– Open Access (no charges for publication)

– http://www.tdp.cat
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