
IEE
E P

ro
of

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

A Lightweight Contextual Arithmetic Coder for
On-Board Remote Sensing Data Compression

Joan Bartrina-Rapesta, Ian Blanes, Senior Member, IEEE, Francesc Aulí-Llinàs, Senior Member, IEEE,
Joan Serra-Sagristà, Senior Member, IEEE, Victor Sanchez, and Michael W. Marcellin, Fellow, IEEE,

Abstract— The Consultative Committee for Space Data Sys-1

tems (CCSDS) has issued several data compression standards2

devised to reduce the amount of data transmitted from satellites3

to ground stations. This paper introduces a contextual arithmetic4

encoder for on-board data compression. The proposed arithmetic5

encoder checks the causal adjacent neighbors, at most, to form6

the context and uses only bitwise operations to estimate the7

related probabilities. As a result, the encoder consumes few com-8

putational resources, making it suitable for on-board operation.9

Our coding approach is based on the prediction and mapping10

stages of CCSDS-123 lossless compression standard, an optional11

quantizer stage to yield lossless or near-lossless compression and12

our proposed arithmetic encoder. For both lossless and near-13

lossless compression, the achieved coding performance is superior14

to that of CCSDS-123, M-CALIC, and JPEG-LS. Taking into15

account only the entropy encoders, fixed-length codeword is16

slightly better than MQ and interleaved entropy coding.17

Index Terms— Arithmetic coding, Consultative Committee for18

Space Data Systems (CCSDS)-123, lossless and near-lossless19

coding, remote sensing data compression.20

I. INTRODUCTION21

REMOTE sensing imagery is becoming an invaluable tool22

for governments, rescue teams, and aid organizations23

to manage infrastructure and natural resources, to appraise24

climate changes, or to give support when natural disasters25

strike. Since remote sensing images tend to be very large,26

high-performance compression techniques are of paramount27

importance.28

Let I , J , and K be the number of columns, rows, and com-29

ponents of an image x and let xi, j,k denote a pixel at location30

(i, j, k) of the image. Such an image is commonly compressed31

employing one of three regimes: lossless compression, which32

allows perfect reconstruction of the original image x ; lossy33

compression, which approximates x , introducing an error in34
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the reconstructed image x ′ that enables a higher compression 35

ratio than possible with lossless compression; or near-lossless 36

compression, which is a particular case of lossy compression 37

where the peak absolute error (PAE) of x ′ is controlled during 38

the coding process with a tolerance value !. Specifically 39

max
i, j,k

{∣∣xi, j,k − x ′i, j,k

∣∣} ≤ !. (1) 40

Within the Consultative Committee for Space Data Systems 41

(CCSDS) [1], the Multispectral and Hyperspectral Data Com- 42

pression Working Group is in charge of proposing techniques 43

for remote sensing data compression. Such techniques are 44

mainly developed to be implemented on board, where limited 45

resources are available and low complexity encoders are 46

needed. In 1997, the CCSDS published CCSDS-121.0-B-1 [2], 47

aimed at lossless data compression. In 2005, the CCSDS pub- 48

lished CCSDS-122.0-B-1 [3], devised for lossless and lossy 49

compression of monocomponent images based on wavelet 50

transforms. In 2012, the CCSDS published its latest standard, 51

CCSDS-123.0-B-1 [4], focused on lossless compression for 52

multispectral and hyperspectral images based on prediction. 53

Note that to date, there is no CCSDS standard proposal devised 54

to multispectral and hyperspectral images for near-lossless 55

coding. In what follows, we will refer to CCSDS-123.0-B-1 56

as CCSDS-123. 57

Lossless and near-lossless coding is an active research 58

topic, as witnessed by the number of recent publications in 59

the last decade [5]–[17]. Some of these contributions, such 60

as [7], [11], and [15]–[17], yield better coding performance 61

than CCSDS-123 for lossless compression but at the expense 62

of an increased computational complexity. Among them, the 63

results provided in [7] can be misleading, since they were 64

obtained using images from the 1997 AVIRIS products, which 65

are known to have undergone an inappropriate calibration [18]. 66

Next three contributions [11], [15], and [16] yield better 67

coding performance than CCSDS-123, but at the expense of 68

an increased computational complexity due to the expensive 69

algorithms applied to improve prediction estimation. The last 70

contribution [17] yields competitive coding performance by 71

including a light spectral regression in the spectral domain, 72

which has a low computational cost. 73

It is worth noting that none of the previous techniques 74

provides support for near-lossless coding, which is demanded 75

if even better coding performance is requested. Near-lossless 76

coding [5], [6], [8]–[10], [12]–[14] can yield higher compres- 77

sion ratios at a bounded distortion of ! > 0. Some of the most 78
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prominent recent contributions for near-lossless compression79

are [12], which presents an overview of the latest coding80

standards for remote sensing, including a near-lossless version81

of CCSDS-123; [8] and [9], which introduce a near-lossless82

coding based on wavelet transforms; [14], which goes one step83

further, proposing an embedded near-lossless coding system84

based on wavelet transform and prediction coding; and [13],85

which presents a rate control method for predictive image86

encoders using the CCSDS-123 predictor. Most of the latest87

contributions use the CCSDS-123 predictor, since it is suitable88

for being used on board thanks to its low complexity and high89

decorrelation efficiency.90

After the predictor of CCSDS-123, one can choose between91

a sample- or a block-adaptive encoder. The sample-adaptive92

encoder achieves better performance than the block-adaptive93

encoder when the signal is encoded at more than 1 b/sample.94

However, because the minimum codeword length of the95

sample-adaptive encoder is 1 b, block-adaptive encoding yields96

superior performance for signals that can be encoded at less97

than 1 b/sample.98

Although context-based arithmetic encoders typically obtain99

excellent coding performance at all rates, they are not included100

in CCSDS-123 because they can have a high computa-101

tional demand owing to: 1) probability estimation; 2) the102

renormalization procedure; and 3) context formation, which103

are expensive operations and are executed intensively.104

Despite the computational demand of context-based arithmetic105

encoders, they are included in some remote sensing coding106

approaches [6], [19], [20]. Contributions aimed to reduce107

the computational load by estimating the probability using108

multiplication-free implementations can be found in the lit-109

erature: the Q coder [21] approached the interval division110

by means of lookup tables and the M coder [22] uses a111

reduced range of possible subinterval sizes together with112

lookup tables. Some methods based on these approaches113

have been introduced in different standards [23]–[26]. The114

operations carried out by the renormalization procedure can115

be avoided if, instead of producing a single codeword, the116

coder produces short codewords of fixed length [27], [28].117

In particular, [28] presents a context-adaptive binary arithmetic118

coder with fixed-length coderwords (FLWs) that outperforms119

the MQ [29] and M coders in terms of coding performance.120

FLW avoids the renormalization procedure but still estimates121

probabilities through the division.122

It is worth noting that none of the previously mentioned123

contributions is devised to reduce the computation related to124

probability estimation and the renormalization simultaneously.125

In this paper, we propose an arithmetic encoder that: 1) utilizes126

inexpensive operations to estimate probabilities; 2) does not127

incorporate the renormalization procedure; and 3) employs a128

simple context model. It yields strong coding performance at129

low and high rates for remote sensing images. Our probability130

estimation procedure builds on that of FLW. Originally, FLW131

uses a sliding window to estimate the probability of the132

symbols coded using a division operation. Herein, the sliding133

window size of FLW is adapted to deal only with power of134

two sizes, which allows the use of low-complexity bitwise135

operations and spares the division.136

Fig. 1. CCSDS-123 encoding scheme.

The proposed arithmetic coder is incorporated in a lossless 137

and near-lossless coding scheme, providing improved com- 138

pression performance over current remote sensing image com- 139

pression techniques. Roughly described, the adopted coding 140

scheme departs from the predictor and mapping included in 141

CCSDS-123 and utilizes a near-lossless quantizer, employs a 142

binary arithmetic coder that operates on a line-by-line and 143

bitplane-by-bitplane basis, introduces a new context model that 144

evaluates (at most) only causal adjacent samples, and uses only 145

bitwise operations to estimate symbol probabilities. Exten- 146

sive experimental results indicate that our proposed approach 147

improves on CCSDS-123 in terms of lossless compression 148

ratios and also outperforms a near-lossless version of the 149

sample-adaptive and block-adaptive coders of CCSDS-123, 150

JPEG-LS [30] and M-CALIC [6] in terms of lossless and near- 151

lossless coding performances. Comparing only the entropy 152

encoders, FLW is slightly better than MQ and interleaved 153

entropy coder (IEC) [31]. 154

The rest of this paper is structured as follows. Section II 155

briefly reviews the CCSDS-123 coding system and a near- 156

lossless technique for coding systems based on prediction. 157

Section III describes our proposed context-based arithmetic 158

coder with bitwise probability estimation. Section IV describes 159

how our proposed arithmetic coder is incorporated in a coding 160

scheme that uses the predictor of CCSDS-123. Section V 161

presents the experimental results. Section VI concludes this 162

paper. 163

II. CCSDS-123 AND NEAR-LOSSLESS COMPRESSION 164

A. CCSDS-123 165

The CCSDS-123 standard, which is limited to encoding 166

samples of N = 16 b/pixel/band, can be structured in three 167

stages: predictor, mapper, and entropy encoder. Fig. 1 illus- 168

trates the encoding pipeline of CCSDS-123. 169

In summary, the predictor estimates the value of the current 170

sample xi, j,k using previously scanned samples. This predicted 171

sample is denoted by x̃i, j,k . The prediction error " is com- 172

puted as 173

"i, j,k = xi, j,k − x̃i, j,k (2) 174

and then mapped to a non-negative integer λi, j,k called the 175

mapped prediction residual. The entropy encoder is in charge 176

of encoding λi, j,k without loss. For the entropy encoder in 177

CCSDS-123, one can choose between a sample- and a block- 178

adaptive encoder. 179

Further details of the CCSDS-123 stages can be found 180

in [12] and [32]. 181

B. Near-Lossless Compression 182

For the encoder described above, the decoder can reproduce 183

xi, j,k , without loss. In this section, we discuss the addition of a 184
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Fig. 2. Illustration of the scanning order and the entropy encoder.

quantizer, which results in higher compression ratios, but at the185

expense of some loss of fidelity in the decompressed image.186

The simplest and most effective way to design a187

prediction-based lossy compression algorithm is to quantize188

the prediction error "i, j,k with a quantizer Q, resulting189

in quantized-then-dequantized version "̂i, j,k (and, in conse-190

quence, λ̂i, j,k). The resulting quantization index is referred191

to as "Q
i, j,k and its remapped version is denoted by λQ

i, j,k .192

Subsequent predictions x̃i, j,k are calculated using previous193

reconstructed (lossy) samples x̂i, j,k , which are obtained by194

implementing a decoder in the encoder [12], [33]. The decoder195

creates the reconstructed (lossy) image samples via196

x̂i, j,k = "̂i, j,k + x̃i, j,k . (3)197

It is worth noting that the errors in the reconstructed pixels198

are identical to the errors introduced in the prediction errors199

by the quantizer. That is, xi, j,k− x̂i, j,k = "i, j,k−"̂i, j,k . Thus,200

the errors in reconstructed pixels can be precisely controlled201

by controlling the individual quantization errors. This is the202

basis of “near-lossless compression.”203

III. LIGHTWEIGHT BINARY ARITHMETIC CODER204

WITH CONTEXT MODEL205

The entropy encoder presented in this paper works with206

binary symbols. To this end, we denote the nth bit of the207

binary representation of λQ
i, j,k by bn

i, j,k , with N − 1 ≥ n ≥ 0.208

Here, N is chosen to provide a sufficient number of bits to209

represent all the λQ
i, j,k , being bN−1

i, j,k the most significant bit.210

To facilitate use with on-board sensors, our proposal211

processes data in a line-by-line fashion. Once a line is scanned,212

predicted, and mapped to positive values, it is entropy encoded213

on a bitplane-by-bitplane basis. The entropy encoder makes214

use of context model patterns obtained using a context window215

that contains symbols coded previously to the current symbol.216

The top left of Fig. 2 displays the quantized and remapped 217

prediction residuals λQ . The binary representation of these 218

samples is shown on the right, while the bottom left portrays 219

the entropy encoder, which is fed by the current bit to be 220

encoded and its context. The bit to be encoded is shaded in 221

blue, while the context window is framed with a rectangle. 222

A. Context Model 223

Let M be the set of all possible patterns that can occur 224

within the context window, with context m ∈ M being a 225

particular realization, resulting in a context index c ∈ C = 226

{0, . . . , C − 1}. These context indices (loosely referred to 227

as contexts in what follows) are determined by a modeling 228

function F : M→ C. For each bit b to be coded, a probability 229

model is used, corresponding to its context c. In particular, 230

the probability model estimates the conditional probability 231

p(b|c) = p(b|F(m)). After encoding, the probability model is 232

updated with the latest coded bit b. That is, p(b|c) is estimated 233

on the fly. Specifically, our probability model estimates the 234

probability p(b = 0|c). A careful design of the context 235

model is required to obtain high coding efficiency. This task is 236

complicated by the goal of achieving low encoder complexity 237

for the purpose of operating on onboard remote sensing 238

scenarios. 239

A simple strategy for context modeling employs a context 240

window that contains only the three nearest causal neighbors 241

as depicted in Fig. 2. We consider several choices for the 242

context modeling function F . The first ignores all samples 243

within the context window except the one directly above the 244

sample of interest. This is indicated in Fig. 3(a). Three other 245

choices are shown in Fig. 3(b)–(d). The notations V, H, HV, 246

and HVD are used in Fig. 3, where V (vertical) denotes the 247

sample above the bit to be encoded, H (horizontal) denotes 248

the sample to the left, and D (diagonal) denotes the sample to 249



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Illustration of different context models to encode bn
i, j,k . (a) V. (b) H. (c) HV. (d) HVD. (e) S. (f) VS. (g) HS. (h) HVS. (i) HVDS.

TABLE I

CONTEXT ASSIGNMENTS FOR THE V, H, HV, AND HVD MODELING FUNCTIONS

the left and above. To take advantage of dependencies between250

spectral components, the preceding spectral component k − 1251

can be included in the context window. In this case, S (spec-252

tral) denotes the coregistered sample in the previous spectral253

component. The inclusion of this sample gives rise to five254

additional modeling functions as shown in Fig. 3(e)–(i). Note255

that if only samples H and S are employed by the modeling256

function, only the current scanned line must be stored in257

memory. For all other modeling functions, the previous and258

the current lines are necessary.259

Rather than the actual bit (from bitplane n) of each neigh-260

boring sample, the so-called “significance state” is employed261

to compute the context c. To this end, let sn
i, j,k denote the262

significance state of the sample at location i, j, k at bitplane n.263

A value of 1 indicates that the sample contains a 1 at bitplane n264

or higher. Table I shows how c is derived from the significance265

states of the neighbors for the V, H, HV, and HVD modeling266

functions. The S modeling function results in two states, i.e.,267

c ∈ {0, 1}. The VS, HS, HVS, and HVDS modeling functions268

result in twice the number of states than their counterparts that269

do not employ S. They are not shown in Table I for the sake270

of space. The experimental results for all context modeling271

functions are presented in a subsequent section.272

Before finishing this section, we note that the entropy coder273

and its associated probability models are initialized at the274

beginning of each bit plane of each component. In particular, 275

the initial probability model for each context is set to a value 276

of p(b = 0|c) = 0.66. The probability is biased toward 0 277

since, as found empirically, bits of higher bitplanes have higher 278

probability of being 0, thus allowing FLW to adapt faster. 279

This, together with the fact that all bitplane data from the 280

current line (and its predecessor, when relevant) are available 281

in the encoder, leads to the conclusion that the bitplanes of the 282

current line can be encoded in parallel. This parallel strategy 283

is not possible in the decoder. The use of significant states 284

in the context formation process requires that bitplanes be 285

decoded sequentially. We note that the probabilities are reset 286

(p(b = 0|c) = 0.66) at the beginning of each component 287

without penalizing the coding performance. This is because 288

only 212 symbols are encoded with the default probability 289

value, which on average for the image corpora used, cor- 290

responds to the 0.06% of the total symbols per band to be 291

encoded. 292

B. Bitwise Probability Estimation 293

As mentioned before, FLW was devised to reduce com- 294

putational costs through the use of FLWs, which avoids a 295

renormalization operation, but is not aimed to reduce the 296

computational load derived from probability estimation [28]. 297
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Fig. 4. Adopted coding approach.

TABLE II

MAIN DIFFERENCES BETWEEN CCSDS-123 AND THE ADOPTED APPROACH

For each context c, FLW uses a sliding window of symbols298

coded with that context. The length of this window varies299

between T and 2T − 1 symbols. The probability estimate is300

updated once every V symbols coded, according to301

p(b = 0|c) = Z ≪ B
W

(4)302

with W representing the number of symbols within the win-303

dow, Z the number of zeroes within the window, and B304

the number of bits used to express symbol probabilities. The305

numerator of the expression is computed by left shifting the306

binary representation of Z by B bits. The size of the window307

is incremented each time a symbol is encoded using context c308

until W = 2T , at which time the window size is immediately309

reduced to T and the number of zeroes within the window310

is updated according to Z ← Z − Z ′ and Z ′ ← Z , with311

Z ′ being the number of zeroes coded during the most recent312

T symbols.313

In the original approach of FLW as formulated above,314

p(b|c) is computed via a division operation to achieve max-315

imum accuracy. Such a division may tax the on-board com-316

putational resources in a remote sensing scenario. To reduce317

computational complexity, we propose to estimate the prob-318

ability through bitwise operations. The substitution of the319

division by bitwise operations requires that V = T and that320

both are a power of two. This forces the sliding window to321

contain a power of two symbols, so the probability can be322

updated using only bit shift operations according to323

p(b|c) = (Z ≪ B)≫ log2(W ) (5)324

where W and Z are then updated through W ← W ≫ 1 and325

Z ← Z ≫ 1. Note that this update rule for Z approximates326

only the number of zeroes in the most recent T coded samples.327

Nevertheless, the update can be carried out in the decoder328

using the same approximation. At the beginning of encoding,329

the probability is first updated when V symbols are coded.330

Subsequently, it is updated every V/2 symbols. The strategy331

proposed here can be seen as a special case of (4), which was332

not explored in [28].333

Using (5) instead of (4) reduces the flexibility of the arith-334

metic coder since the updating of the probability estimates and335

the window size are tied together. The maximum performance336

achieved with the original formulation of the arithmetic coder 337

proposed in [28] is achieved when the probability estimate 338

is updated every symbol, i.e., V = 1, regardless of the 339

window size. The strategy proposed here provides a significant 340

reduction in complexity with a minor reduction in compression 341

performance. The experimental results provided in Section V 342

indicate that our approach yields highly competitive compres- 343

sion performance. 344

IV. ADOPTED CODING APPROACH 345

Although the novel entropy encoder presented here may 346

be incorporated in any coding system, we employ it in the 347

CCSDS-123 coding pipeline. Fig. 4 illustrates the adopted 348

coding approach, which employs the predictor and mapper of 349

CCSDS-123, but adds a near-lossless quantizer (see the yellow 350

block), and substitutes the usual CCSDS-123 encoder by our 351

entropy encoder (see the green block). The circle containing 352

a cross at the left side of Fig. 4 indicates that the input to 353

the predictor is either the original pixel x (when the optional 354

quantization is not present) or the reconstructed pixel x̂ (when 355

quantization is present). 356

The adopted coding scheme is evaluated with a uniform 357

quantizer (UQ) and a uniform scalar deadzone quantizater 358

(USDQ) [29]. The UQ operates over "i, j,k to obtain a 359

quantization index according to 360

"Q
i, j,k = sign("i, j,k)

⌊ |"i, j,k | + !

2! + 1

⌋
(6) 361

where 2! + 1 is the quantization step size. The oper- 362

ation to reconstruct "̂i, j,k from its quantization index is 363

given by 364

"̂i, j,k = sign
(
"Q

i, j,k

)
(2! + 1)"Q

i, j,k . (7) 365

The UQ is employed in lossless compression techniques such 366

as JPEG-LS, M-CALIC, and 3-D-CALIC [34]. On the other 367

hand, the USDQ quantizes "i, j,k to obtain a quantization index 368

according to 369

"Q
i, j,k = sign("i, j,k)

⌊ |"i, j,k |
! + 1

⌋
(8) 370
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TABLE III

SUMMARY OF DATA USED IN THE EXPERIMENTAL RESULTS. SENSOR NAME, ITS ABBREVIATION, THE NUMBER OF IMAGES FROM EACH SENSOR,
AND FIRST-ORDER ENTROPIES (IN BITS PER SAMPLE) ON AVERAGE PER SENSOR ARE PROVIDED. THE LAST TWO COLUMNS

INDICATE THE PREDICTOR MODE AND THE LOCAL SUM USED FOR EACH SENSOR

where the quantization step is ! + 1. The operation to371

reconstruct "̂i, j,k from its quantization index is expressed as372

"̂i, j,k = sign
(
"Q

i, j,k

)
(! + 1)"Q

i, j,k . (9)373

Due to its straightforward implementation and excellent374

performance, the USDQ has been selected for the JPEG375

2000 standard [24]. The USDQ partitions the range of input376

values into intervals all of size !, except for the interval that377

contains zero, which is of size 2!. This results in all absolute378

pixel errors |xi, j,k − x̂i, j,k | being bounded above ! for both379

quantizers.380

Table II summarizes the main differences between381

CCSDS-123 and the adopted coding scheme.382

V. EXPERIMENTAL RESULTS383

This section presents a set of experiments aimed at the384

analysis and evaluation of the adopted coding scheme. First,385

the proposed context modeling functions are evaluated in386

terms of the conditional entropy of the prediction residual.387

The bitwise probability estimator is then evaluated via the388

same performance metric to determine its proper configuration.389

A variety of binary encoder mechanisms such as IEC, MQ,390

and FLW are evaluated in terms of their lossless compres-391

sion performance in conjunction with the proposed context392

modeling and probability estimation. Finally, the resulting393

proposed overall approach is compared in terms of lossless and394

near-lossless compression performances with CCSDS-123,395

JPEG-LS, and M-CALIC.396

For the experiments conducted in this paper, we have397

selected a set of images1 collected with different sensors that398

are included in CCSDS MHDC-WG corpus. The sensor names399

and their main features are listed in Table III. The average400

entropy is reported for each image type. The reported values401

are first-order entropy; they represent the entropy of individual402

pixels, without accounting for any dependencies among pixels403

within or between components.404

In [35], the impact of different CCSDS-123 parameters405

that control the operation of the prediction and the entropy406

encoder was evaluated, suggesting that a correct parameter407

1The images used are available at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-
B-Info/TestData

selection had more impact on the predictor stage than in 408

the entropy encoder stage. Concerning the prediction, the 409

parameters local sum type, prediction mode, the number of 410

prediction bands, and predictor adaption rate were the most 411

critical. Extensive experimental evaluations were conducted to 412

find suitable configurations. 413

In this paper, leaning on the results in [35] and after 414

conducting an extensive evaluation also, experimental results 415

are produced for the following parameter configuration: the 416

local sum type and predictor mode depend on the acquisition 417

sensor (as indicated in the last two columns of Table III); 418

the number of prediction bands P is set to 3, since it is a 419

good tradeoff between the computational load and the coding 420

performance; and the predictor adaptation rate νmax is set to 3, 421

since, in general, it yields the best performance. 422

For evaluating the performance of context modeling and 423

probability estimation, we employ the conditional entropy of 424

the prediction residuals, as mentioned above. For the work 425

proposed here, binary entropy coding is employed. To yield 426

results with units in bits per pixel, the binary entropies of 427

all bitplanes are added. Since our context model estimates the 428

probability of p(b = 0|c), the conditional entropy of an image 429

(in bits) is computed as 430

H (λQ) =
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

15∑

n=0

431

×
{

log2
(

p
(
bn

i, j,k = 0|c
))

if bn
i, j,k = 0

log2
(
1− p

(
bn

i, j,k = 0|c
))

if bn
i, j,k = 1

(10) 432

where λQ denotes the symbols to be entropy coded. 433

A. Context Modeling Function 434

The context model is used to select the probability model 435

that is employed to encode the current symbol. In this first 436

experiment, each of the probability models themselves is 437

estimated using the high-performance method given by (4) 438

employing V = 1 and T = 212, without regard to complexity. 439

Table IV provides the conditional entropy obtained (in bits 440

per sample) for the different context formations defined in 441

Section III-A, i.e., V, H, HV, HVD, S, VS, HS, HVS, and 442

HVDS. The results from Table III suggest the following. 443
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TABLE IV

CONDITIONAL ENTROPY OF THE PREDICTION RESIDUALS (IN BITS PER SAMPLE) FOR THE CONTEXT MODELING FUNCTIONS DENOTED BY V, H, HV,
HVD, S, VS, HS, HVS, AND HVDS. RESULTS ARE REPORTED ON AVERAGE FOR DIFFERENT SENSORS AND ! = 0

TABLE V

CONDITIONAL ENTROPY OF THE PREDICTION RESIDUALS (IN BITS PER SAMPLE) FOR ! = 0 RESULTING FROM THE MAXIMUM PRECISION
AND THE BITWISE PROBABILITY ESTIMATORS. THE V CONTEXT MODEL IS EMPLOYED IN EACH CASE. THE BEST

RESULTS FOR EACH STRATEGY ARE REPRESENTED IN BOLD

1) All of the modeling functions provide significant444

improvements over the pixel entropy reported in445

Table III.446

2) The differences in performance between the modeling447

functions are generally small.448

3) Although the context models H and S yield the worst449

performance on average, they are the best option when450

memory resources are severely limited since they need451

only to store samples from the current line to be452

encoded.453

4) Adding the S sample to a context results in an improve-454

ment of only about 0.01 b/sample.455

5) The V context obtains a coding benefit of 0.02 b/sample456

on average with respect to the H context and only adds457

the previous processed line to its storage requirements.458

In what follows, we select context model V for further eval-459

uation due to its favorable tradeoff among the performance,460

memory resources, and computational load.461

B. Probability Estimation462

This section reports the results obtained by the two differ-463

ent probability estimation strategies discussed in Section III.464

In particular, Table V reports the conditional entropy of the465

prediction residuals resulting from the two different probability466

estimation strategies. In both cases, the V context model 467

is employed. The left of Table V presents results for the 468

maximum precision technique (using division), as defined 469

by (4). These results are shown for different values of T , 470

but V = 1. The right side of Table V presents results for 471

the bitwise strategy, as defined by (5). The same values of T 472

are explored, but always with V = T , as required to avoid 473

division. The results suggest that T = 212 attains the highest 474

performance for both strategies. A larger T degrades the 475

coding performance because the window may contain symbols 476

that are not correlated with the current one. A smaller T 477

degrades the coding performance because there are insufficient 478

symbols to reliably estimate the probabilities p(b|C). The 479

results of Table V also indicate that the low-complexity 480

strategy that employs bitwise operations is as competitive as 481

that employing division. Although not tabulated here for the 482

sake of space, these results hold for the other context modeling 483

functions considered in the previous sections. 484

C. Entropy Coding 485

We note that the context model and probability estimator 486

proposed here can be used with any entropy encoder that codes 487

binary symbols according to a given probability model, such 488

as MQ, IEC or the adopted FLW. Table VI provides the actual 489
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Fig. 5. Visual comparison for the “Aviris Calibrated Yellowstone sc00” image. (a) Original. (b) Proposed approach at 0.43 b/sample (! = 20). (c) M-CALIC
at 0.42 b/sample (! = 30). (d) CCSDS-123 at 0.50 b/sample (! = 80).

TABLE VI

CODING PERFORMANCE (IN Bits per Sample) OF THE PROPOSED
APPROACH USING MQ, IEC, AND FLW ENTROPY ENCODING.

ALL RESULTS EMPLOY CONTEXT MODEL V AND BITWISE
PROBABILITY ESTIMATION WITH T = V = 212

compression results (in bits per sample) obtained using the490

MQ, IEC, and FLW entropy coders. In each case, the results491

are obtained with context model V and the bitwise estimator492

with T = V = 212. From these results, we can see that, on493

average, FLW yields slightly better results than IEC and MQ.494

D. Lossless and Near-Lossless Compression495

The results reported in this section compare the loss-496

less performance of the proposed approach with those of497

JPEG-LS, M-CALIC, and CCSDS-123. Additionally, we com-498

pare its near-lossless performance with those of JPEG-LS499

and M-CALIC and the implementation of CCSDS-123.500

Different quantizers have been combined with our proposal501

and CCSDS-123, to obtain an as fair as possible comparison.502

In particular, the UQ and the USDQ discussed in Section IV 503

are compared. 504

M-CALIC and the near-lossless version of CCSDS-123 are 505

considered to be state of the art in terms of compression 506

performance and computational complexity, and JPEG-LS is a 507

standard technique with near-lossless features. All results for 508

the proposed scheme are produced using the FLW arithmetic 509

coder, context model V, and the bitwise probability estimator 510

having V = T = 212. The results reported in Table VII 511

indicate that our method outperforms both M-CALIC and 512

CCSDS-123 in terms of lossless coding (! = 0) for all 513

sensors. In the near-lossless regime (! > 0), the proposed 514

approach outperforms M-CALIC when the USDQ is used and 515

in most cases for the UQ. In particular, M-CALIC obtains 516

slightly better results than our proposal only for images 517

acquired with sensors AIRS and Hyperion when the UQ 518

is used. On the other hand, the proposed system always 519

outperforms the near-lossless extension of CCSDS-123 for 520

both quantizers. In addition, in general, for the same ! value, 521

the coding performance is better for the USDQ than for UQ. 522

Although achieved bit rates vary widely from image to image, 523

low bit rates can be obtained for all images with a modest 524

value of PAEs (maximum absolute pixel error). 525

E. Visual Comparison 526

To evaluate visual performance, we show a region cropped 527

from an image encoded at the “same” bit rate by the proposed 528

approach with the UQ, M-CALIC, and CCSDS-123. For 529

CCSDS-123, we employ the block-adaptive coder since we 530

want to compare the images at a bit rate lower than 1 b/sample. 531
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TABLE VII

LOSSLESS (! = 0) AND NEAR-LOSSLESS (! > 0) COMPRESSION RESULTS FOR THE PROPOSED APPROACH. FOR COMPARISON, THE RESULTS
FOR JPEG-LS, M-CALIC, AND CCSDS-123 ARE INCLUDED. BOTH A UQ AND A USDQ HAVE BEEN USED IN OUR PROPOSED

APPROACH AND IN OUR NEAR-LOSSLESS EXTENSION TO CCSDS-123 TO PRODUCE RESULTS FOR ! > 0.
THE RESULTS ARE REPORTED IN BITS PER SAMPLE (LOWER IS BETTER)

We note that none of the schemes compared here includes532

precise rate control. For this reason, we have employed the533

following methodology: 1) encode an image using a variety of534

different quantization step sizes for each compression scheme535

and 2) choose those encoded images that yield bit rates as536

close as possible for the three algorithms. We note that a close537

match was not obtained in the case of CCSDS-123, so a step538

size was chosen to afford a higher bit rate than that of the539

proposed approach, thus giving an advantage to CCSDS-123540

in terms of visual performance.541

The results of this process are shown in Fig. 5 for a542

crop from component 122 of the image “Aviris Calibrated543

Yellowstone sc00.” The bit rates obtained are 0.43, 0.42, and544

0.50 for the proposed approach, M-CALIC, and CCSDS-123,545

respectively. The reader is invited to zoom in to see the546

specific visual artifacts arising from the different compression547

schemes. Fig. 5 indicates that the image obtained by the 548

proposed approach has higher visual quality than those by 549

(near lossless) CCSDS-123 and M-CALIC. In particular, the 550

proposed approach preserves edges and textures very well, 551

while M-CALIC results in smoothness and loss of texture. 552

CCSDS-123 also removes texture, but also introduces an 553

annoying “banding” effect, due to the high step size required 554

to reach 0.50 b/sample. 555

VI. CONCLUSION 556

This paper proposes an entropy encoder based on an 557

efficient definition for a context model and the associated 558

strategy to estimate probabilities for use in a fixed-length 559

arithmetic encoder using low-cost bitwise operations. These 560

contributions are incorporated in a coding approach that 561

employs the predictor included in CCSDS-123. A near-lossless 562



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

quantizer has also been deployed. The entropy encoder works563

on a line-by-line and bitplane-by-bitplane scanning order. The564

experimental results indicate that the use of a single neighbor565

for the context formation is enough to properly exploit the566

contextual information in the arithmetic encoder and that567

it is possible to estimate the probability employing bitwise568

operations without penalizing the coding efficiency. Further569

results indicate that, on average, our proposal improves the570

current standard version of CCSDS-123 for lossless coding571

by more than 0.1 b/sample. Compared with M-CALIC, our572

proposal provides an average improvement of 0.86 b/sample573

for lossless, whereas for near-lossless, the benefit ranges from574

0.13 to 0.31 b/sample, depending on the allowed PAE.575
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A Lightweight Contextual Arithmetic Coder for
On-Board Remote Sensing Data Compression

Joan Bartrina-Rapesta, Ian Blanes, Senior Member, IEEE, Francesc Aulí-Llinàs, Senior Member, IEEE,
Joan Serra-Sagristà, Senior Member, IEEE, Victor Sanchez, and Michael W. Marcellin, Fellow, IEEE,

Abstract— The Consultative Committee for Space Data Sys-1

tems (CCSDS) has issued several data compression standards2

devised to reduce the amount of data transmitted from satellites3

to ground stations. This paper introduces a contextual arithmetic4

encoder for on-board data compression. The proposed arithmetic5

encoder checks the causal adjacent neighbors, at most, to form6

the context and uses only bitwise operations to estimate the7

related probabilities. As a result, the encoder consumes few com-8

putational resources, making it suitable for on-board operation.9

Our coding approach is based on the prediction and mapping10

stages of CCSDS-123 lossless compression standard, an optional11

quantizer stage to yield lossless or near-lossless compression and12

our proposed arithmetic encoder. For both lossless and near-13

lossless compression, the achieved coding performance is superior14

to that of CCSDS-123, M-CALIC, and JPEG-LS. Taking into15

account only the entropy encoders, fixed-length codeword is16

slightly better than MQ and interleaved entropy coding.17

Index Terms— Arithmetic coding, Consultative Committee for18

Space Data Systems (CCSDS)-123, lossless and near-lossless19

coding, remote sensing data compression.20

I. INTRODUCTION21

REMOTE sensing imagery is becoming an invaluable tool22

for governments, rescue teams, and aid organizations23

to manage infrastructure and natural resources, to appraise24

climate changes, or to give support when natural disasters25

strike. Since remote sensing images tend to be very large,26

high-performance compression techniques are of paramount27

importance.28

Let I , J , and K be the number of columns, rows, and com-29

ponents of an image x and let xi, j,k denote a pixel at location30

(i, j, k) of the image. Such an image is commonly compressed31

employing one of three regimes: lossless compression, which32

allows perfect reconstruction of the original image x ; lossy33

compression, which approximates x , introducing an error in34
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the reconstructed image x ′ that enables a higher compression 35

ratio than possible with lossless compression; or near-lossless 36

compression, which is a particular case of lossy compression 37

where the peak absolute error (PAE) of x ′ is controlled during 38

the coding process with a tolerance value !. Specifically 39

max
i, j,k

{∣∣xi, j,k − x ′i, j,k

∣∣} ≤ !. (1) 40

Within the Consultative Committee for Space Data Systems 41

(CCSDS) [1], the Multispectral and Hyperspectral Data Com- 42

pression Working Group is in charge of proposing techniques 43

for remote sensing data compression. Such techniques are 44

mainly developed to be implemented on board, where limited 45

resources are available and low complexity encoders are 46

needed. In 1997, the CCSDS published CCSDS-121.0-B-1 [2], 47

aimed at lossless data compression. In 2005, the CCSDS pub- 48

lished CCSDS-122.0-B-1 [3], devised for lossless and lossy 49

compression of monocomponent images based on wavelet 50

transforms. In 2012, the CCSDS published its latest standard, 51

CCSDS-123.0-B-1 [4], focused on lossless compression for 52

multispectral and hyperspectral images based on prediction. 53

Note that to date, there is no CCSDS standard proposal devised 54

to multispectral and hyperspectral images for near-lossless 55

coding. In what follows, we will refer to CCSDS-123.0-B-1 56

as CCSDS-123. 57

Lossless and near-lossless coding is an active research 58

topic, as witnessed by the number of recent publications in 59

the last decade [5]–[17]. Some of these contributions, such 60

as [7], [11], and [15]–[17], yield better coding performance 61

than CCSDS-123 for lossless compression but at the expense 62

of an increased computational complexity. Among them, the 63

results provided in [7] can be misleading, since they were 64

obtained using images from the 1997 AVIRIS products, which 65

are known to have undergone an inappropriate calibration [18]. 66

Next three contributions [11], [15], and [16] yield better 67

coding performance than CCSDS-123, but at the expense of 68

an increased computational complexity due to the expensive 69

algorithms applied to improve prediction estimation. The last 70

contribution [17] yields competitive coding performance by 71

including a light spectral regression in the spectral domain, 72

which has a low computational cost. 73

It is worth noting that none of the previous techniques 74

provides support for near-lossless coding, which is demanded 75

if even better coding performance is requested. Near-lossless 76

coding [5], [6], [8]–[10], [12]–[14] can yield higher compres- 77

sion ratios at a bounded distortion of ! > 0. Some of the most 78

0196-2892 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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prominent recent contributions for near-lossless compression79

are [12], which presents an overview of the latest coding80

standards for remote sensing, including a near-lossless version81

of CCSDS-123; [8] and [9], which introduce a near-lossless82

coding based on wavelet transforms; [14], which goes one step83

further, proposing an embedded near-lossless coding system84

based on wavelet transform and prediction coding; and [13],85

which presents a rate control method for predictive image86

encoders using the CCSDS-123 predictor. Most of the latest87

contributions use the CCSDS-123 predictor, since it is suitable88

for being used on board thanks to its low complexity and high89

decorrelation efficiency.90

After the predictor of CCSDS-123, one can choose between91

a sample- or a block-adaptive encoder. The sample-adaptive92

encoder achieves better performance than the block-adaptive93

encoder when the signal is encoded at more than 1 b/sample.94

However, because the minimum codeword length of the95

sample-adaptive encoder is 1 b, block-adaptive encoding yields96

superior performance for signals that can be encoded at less97

than 1 b/sample.98

Although context-based arithmetic encoders typically obtain99

excellent coding performance at all rates, they are not included100

in CCSDS-123 because they can have a high computa-101

tional demand owing to: 1) probability estimation; 2) the102

renormalization procedure; and 3) context formation, which103

are expensive operations and are executed intensively.104

Despite the computational demand of context-based arithmetic105

encoders, they are included in some remote sensing coding106

approaches [6], [19], [20]. Contributions aimed to reduce107

the computational load by estimating the probability using108

multiplication-free implementations can be found in the lit-109

erature: the Q coder [21] approached the interval division110

by means of lookup tables and the M coder [22] uses a111

reduced range of possible subinterval sizes together with112

lookup tables. Some methods based on these approaches113

have been introduced in different standards [23]–[26]. The114

operations carried out by the renormalization procedure can115

be avoided if, instead of producing a single codeword, the116

coder produces short codewords of fixed length [27], [28].117

In particular, [28] presents a context-adaptive binary arithmetic118

coder with fixed-length coderwords (FLWs) that outperforms119

the MQ [29] and M coders in terms of coding performance.120

FLW avoids the renormalization procedure but still estimates121

probabilities through the division.122

It is worth noting that none of the previously mentioned123

contributions is devised to reduce the computation related to124

probability estimation and the renormalization simultaneously.125

In this paper, we propose an arithmetic encoder that: 1) utilizes126

inexpensive operations to estimate probabilities; 2) does not127

incorporate the renormalization procedure; and 3) employs a128

simple context model. It yields strong coding performance at129

low and high rates for remote sensing images. Our probability130

estimation procedure builds on that of FLW. Originally, FLW131

uses a sliding window to estimate the probability of the132

symbols coded using a division operation. Herein, the sliding133

window size of FLW is adapted to deal only with power of134

two sizes, which allows the use of low-complexity bitwise135

operations and spares the division.136

Fig. 1. CCSDS-123 encoding scheme.

The proposed arithmetic coder is incorporated in a lossless 137

and near-lossless coding scheme, providing improved com- 138

pression performance over current remote sensing image com- 139

pression techniques. Roughly described, the adopted coding 140

scheme departs from the predictor and mapping included in 141

CCSDS-123 and utilizes a near-lossless quantizer, employs a 142

binary arithmetic coder that operates on a line-by-line and 143

bitplane-by-bitplane basis, introduces a new context model that 144

evaluates (at most) only causal adjacent samples, and uses only 145

bitwise operations to estimate symbol probabilities. Exten- 146

sive experimental results indicate that our proposed approach 147

improves on CCSDS-123 in terms of lossless compression 148

ratios and also outperforms a near-lossless version of the 149

sample-adaptive and block-adaptive coders of CCSDS-123, 150

JPEG-LS [30] and M-CALIC [6] in terms of lossless and near- 151

lossless coding performances. Comparing only the entropy 152

encoders, FLW is slightly better than MQ and interleaved 153

entropy coder (IEC) [31]. 154

The rest of this paper is structured as follows. Section II 155

briefly reviews the CCSDS-123 coding system and a near- 156

lossless technique for coding systems based on prediction. 157

Section III describes our proposed context-based arithmetic 158

coder with bitwise probability estimation. Section IV describes 159

how our proposed arithmetic coder is incorporated in a coding 160

scheme that uses the predictor of CCSDS-123. Section V 161

presents the experimental results. Section VI concludes this 162

paper. 163

II. CCSDS-123 AND NEAR-LOSSLESS COMPRESSION 164

A. CCSDS-123 165

The CCSDS-123 standard, which is limited to encoding 166

samples of N = 16 b/pixel/band, can be structured in three 167

stages: predictor, mapper, and entropy encoder. Fig. 1 illus- 168

trates the encoding pipeline of CCSDS-123. 169

In summary, the predictor estimates the value of the current 170

sample xi, j,k using previously scanned samples. This predicted 171

sample is denoted by x̃i, j,k . The prediction error " is com- 172

puted as 173

"i, j,k = xi, j,k − x̃i, j,k (2) 174

and then mapped to a non-negative integer λi, j,k called the 175

mapped prediction residual. The entropy encoder is in charge 176

of encoding λi, j,k without loss. For the entropy encoder in 177

CCSDS-123, one can choose between a sample- and a block- 178

adaptive encoder. 179

Further details of the CCSDS-123 stages can be found 180

in [12] and [32]. 181

B. Near-Lossless Compression 182

For the encoder described above, the decoder can reproduce 183

xi, j,k , without loss. In this section, we discuss the addition of a 184
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Fig. 2. Illustration of the scanning order and the entropy encoder.

quantizer, which results in higher compression ratios, but at the185

expense of some loss of fidelity in the decompressed image.186

The simplest and most effective way to design a187

prediction-based lossy compression algorithm is to quantize188

the prediction error "i, j,k with a quantizer Q, resulting189

in quantized-then-dequantized version "̂i, j,k (and, in conse-190

quence, λ̂i, j,k). The resulting quantization index is referred191

to as "Q
i, j,k and its remapped version is denoted by λQ

i, j,k .192

Subsequent predictions x̃i, j,k are calculated using previous193

reconstructed (lossy) samples x̂i, j,k , which are obtained by194

implementing a decoder in the encoder [12], [33]. The decoder195

creates the reconstructed (lossy) image samples via196

x̂i, j,k = "̂i, j,k + x̃i, j,k . (3)197

It is worth noting that the errors in the reconstructed pixels198

are identical to the errors introduced in the prediction errors199

by the quantizer. That is, xi, j,k− x̂i, j,k = "i, j,k−"̂i, j,k . Thus,200

the errors in reconstructed pixels can be precisely controlled201

by controlling the individual quantization errors. This is the202

basis of “near-lossless compression.”203

III. LIGHTWEIGHT BINARY ARITHMETIC CODER204

WITH CONTEXT MODEL205

The entropy encoder presented in this paper works with206

binary symbols. To this end, we denote the nth bit of the207

binary representation of λQ
i, j,k by bn

i, j,k , with N − 1 ≥ n ≥ 0.208

Here, N is chosen to provide a sufficient number of bits to209

represent all the λQ
i, j,k , being bN−1

i, j,k the most significant bit.210

To facilitate use with on-board sensors, our proposal211

processes data in a line-by-line fashion. Once a line is scanned,212

predicted, and mapped to positive values, it is entropy encoded213

on a bitplane-by-bitplane basis. The entropy encoder makes214

use of context model patterns obtained using a context window215

that contains symbols coded previously to the current symbol.216

The top left of Fig. 2 displays the quantized and remapped 217

prediction residuals λQ . The binary representation of these 218

samples is shown on the right, while the bottom left portrays 219

the entropy encoder, which is fed by the current bit to be 220

encoded and its context. The bit to be encoded is shaded in 221

blue, while the context window is framed with a rectangle. 222

A. Context Model 223

Let M be the set of all possible patterns that can occur 224

within the context window, with context m ∈ M being a 225

particular realization, resulting in a context index c ∈ C = 226

{0, . . . , C − 1}. These context indices (loosely referred to 227

as contexts in what follows) are determined by a modeling 228

function F : M→ C. For each bit b to be coded, a probability 229

model is used, corresponding to its context c. In particular, 230

the probability model estimates the conditional probability 231

p(b|c) = p(b|F(m)). After encoding, the probability model is 232

updated with the latest coded bit b. That is, p(b|c) is estimated 233

on the fly. Specifically, our probability model estimates the 234

probability p(b = 0|c). A careful design of the context 235

model is required to obtain high coding efficiency. This task is 236

complicated by the goal of achieving low encoder complexity 237

for the purpose of operating on onboard remote sensing 238

scenarios. 239

A simple strategy for context modeling employs a context 240

window that contains only the three nearest causal neighbors 241

as depicted in Fig. 2. We consider several choices for the 242

context modeling function F . The first ignores all samples 243

within the context window except the one directly above the 244

sample of interest. This is indicated in Fig. 3(a). Three other 245

choices are shown in Fig. 3(b)–(d). The notations V, H, HV, 246

and HVD are used in Fig. 3, where V (vertical) denotes the 247

sample above the bit to be encoded, H (horizontal) denotes 248

the sample to the left, and D (diagonal) denotes the sample to 249
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Fig. 3. Illustration of different context models to encode bn
i, j,k . (a) V. (b) H. (c) HV. (d) HVD. (e) S. (f) VS. (g) HS. (h) HVS. (i) HVDS.

TABLE I

CONTEXT ASSIGNMENTS FOR THE V, H, HV, AND HVD MODELING FUNCTIONS

the left and above. To take advantage of dependencies between250

spectral components, the preceding spectral component k − 1251

can be included in the context window. In this case, S (spec-252

tral) denotes the coregistered sample in the previous spectral253

component. The inclusion of this sample gives rise to five254

additional modeling functions as shown in Fig. 3(e)–(i). Note255

that if only samples H and S are employed by the modeling256

function, only the current scanned line must be stored in257

memory. For all other modeling functions, the previous and258

the current lines are necessary.259

Rather than the actual bit (from bitplane n) of each neigh-260

boring sample, the so-called “significance state” is employed261

to compute the context c. To this end, let sn
i, j,k denote the262

significance state of the sample at location i, j, k at bitplane n.263

A value of 1 indicates that the sample contains a 1 at bitplane n264

or higher. Table I shows how c is derived from the significance265

states of the neighbors for the V, H, HV, and HVD modeling266

functions. The S modeling function results in two states, i.e.,267

c ∈ {0, 1}. The VS, HS, HVS, and HVDS modeling functions268

result in twice the number of states than their counterparts that269

do not employ S. They are not shown in Table I for the sake270

of space. The experimental results for all context modeling271

functions are presented in a subsequent section.272

Before finishing this section, we note that the entropy coder273

and its associated probability models are initialized at the274

beginning of each bit plane of each component. In particular, 275

the initial probability model for each context is set to a value 276

of p(b = 0|c) = 0.66. The probability is biased toward 0 277

since, as found empirically, bits of higher bitplanes have higher 278

probability of being 0, thus allowing FLW to adapt faster. 279

This, together with the fact that all bitplane data from the 280

current line (and its predecessor, when relevant) are available 281

in the encoder, leads to the conclusion that the bitplanes of the 282

current line can be encoded in parallel. This parallel strategy 283

is not possible in the decoder. The use of significant states 284

in the context formation process requires that bitplanes be 285

decoded sequentially. We note that the probabilities are reset 286

(p(b = 0|c) = 0.66) at the beginning of each component 287

without penalizing the coding performance. This is because 288

only 212 symbols are encoded with the default probability 289

value, which on average for the image corpora used, cor- 290

responds to the 0.06% of the total symbols per band to be 291

encoded. 292

B. Bitwise Probability Estimation 293

As mentioned before, FLW was devised to reduce com- 294

putational costs through the use of FLWs, which avoids a 295

renormalization operation, but is not aimed to reduce the 296

computational load derived from probability estimation [28]. 297
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Fig. 4. Adopted coding approach.

TABLE II

MAIN DIFFERENCES BETWEEN CCSDS-123 AND THE ADOPTED APPROACH

For each context c, FLW uses a sliding window of symbols298

coded with that context. The length of this window varies299

between T and 2T − 1 symbols. The probability estimate is300

updated once every V symbols coded, according to301

p(b = 0|c) = Z ≪ B
W

(4)302

with W representing the number of symbols within the win-303

dow, Z the number of zeroes within the window, and B304

the number of bits used to express symbol probabilities. The305

numerator of the expression is computed by left shifting the306

binary representation of Z by B bits. The size of the window307

is incremented each time a symbol is encoded using context c308

until W = 2T , at which time the window size is immediately309

reduced to T and the number of zeroes within the window310

is updated according to Z ← Z − Z ′ and Z ′ ← Z , with311

Z ′ being the number of zeroes coded during the most recent312

T symbols.313

In the original approach of FLW as formulated above,314

p(b|c) is computed via a division operation to achieve max-315

imum accuracy. Such a division may tax the on-board com-316

putational resources in a remote sensing scenario. To reduce317

computational complexity, we propose to estimate the prob-318

ability through bitwise operations. The substitution of the319

division by bitwise operations requires that V = T and that320

both are a power of two. This forces the sliding window to321

contain a power of two symbols, so the probability can be322

updated using only bit shift operations according to323

p(b|c) = (Z ≪ B)≫ log2(W ) (5)324

where W and Z are then updated through W ← W ≫ 1 and325

Z ← Z ≫ 1. Note that this update rule for Z approximates326

only the number of zeroes in the most recent T coded samples.327

Nevertheless, the update can be carried out in the decoder328

using the same approximation. At the beginning of encoding,329

the probability is first updated when V symbols are coded.330

Subsequently, it is updated every V/2 symbols. The strategy331

proposed here can be seen as a special case of (4), which was332

not explored in [28].333

Using (5) instead of (4) reduces the flexibility of the arith-334

metic coder since the updating of the probability estimates and335

the window size are tied together. The maximum performance336

achieved with the original formulation of the arithmetic coder 337

proposed in [28] is achieved when the probability estimate 338

is updated every symbol, i.e., V = 1, regardless of the 339

window size. The strategy proposed here provides a significant 340

reduction in complexity with a minor reduction in compression 341

performance. The experimental results provided in Section V 342

indicate that our approach yields highly competitive compres- 343

sion performance. 344

IV. ADOPTED CODING APPROACH 345

Although the novel entropy encoder presented here may 346

be incorporated in any coding system, we employ it in the 347

CCSDS-123 coding pipeline. Fig. 4 illustrates the adopted 348

coding approach, which employs the predictor and mapper of 349

CCSDS-123, but adds a near-lossless quantizer (see the yellow 350

block), and substitutes the usual CCSDS-123 encoder by our 351

entropy encoder (see the green block). The circle containing 352

a cross at the left side of Fig. 4 indicates that the input to 353

the predictor is either the original pixel x (when the optional 354

quantization is not present) or the reconstructed pixel x̂ (when 355

quantization is present). 356

The adopted coding scheme is evaluated with a uniform 357

quantizer (UQ) and a uniform scalar deadzone quantizater 358

(USDQ) [29]. The UQ operates over "i, j,k to obtain a 359

quantization index according to 360

"Q
i, j,k = sign("i, j,k)

⌊ |"i, j,k | + !

2! + 1

⌋
(6) 361

where 2! + 1 is the quantization step size. The oper- 362

ation to reconstruct "̂i, j,k from its quantization index is 363

given by 364

"̂i, j,k = sign
(
"Q

i, j,k

)
(2! + 1)"Q

i, j,k . (7) 365

The UQ is employed in lossless compression techniques such 366

as JPEG-LS, M-CALIC, and 3-D-CALIC [34]. On the other 367

hand, the USDQ quantizes "i, j,k to obtain a quantization index 368

according to 369

"Q
i, j,k = sign("i, j,k)

⌊ |"i, j,k |
! + 1

⌋
(8) 370
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TABLE III

SUMMARY OF DATA USED IN THE EXPERIMENTAL RESULTS. SENSOR NAME, ITS ABBREVIATION, THE NUMBER OF IMAGES FROM EACH SENSOR,
AND FIRST-ORDER ENTROPIES (IN BITS PER SAMPLE) ON AVERAGE PER SENSOR ARE PROVIDED. THE LAST TWO COLUMNS

INDICATE THE PREDICTOR MODE AND THE LOCAL SUM USED FOR EACH SENSOR

where the quantization step is ! + 1. The operation to371

reconstruct "̂i, j,k from its quantization index is expressed as372

"̂i, j,k = sign
(
"Q

i, j,k

)
(! + 1)"Q

i, j,k . (9)373

Due to its straightforward implementation and excellent374

performance, the USDQ has been selected for the JPEG375

2000 standard [24]. The USDQ partitions the range of input376

values into intervals all of size !, except for the interval that377

contains zero, which is of size 2!. This results in all absolute378

pixel errors |xi, j,k − x̂i, j,k | being bounded above ! for both379

quantizers.380

Table II summarizes the main differences between381

CCSDS-123 and the adopted coding scheme.382

V. EXPERIMENTAL RESULTS383

This section presents a set of experiments aimed at the384

analysis and evaluation of the adopted coding scheme. First,385

the proposed context modeling functions are evaluated in386

terms of the conditional entropy of the prediction residual.387

The bitwise probability estimator is then evaluated via the388

same performance metric to determine its proper configuration.389

A variety of binary encoder mechanisms such as IEC, MQ,390

and FLW are evaluated in terms of their lossless compres-391

sion performance in conjunction with the proposed context392

modeling and probability estimation. Finally, the resulting393

proposed overall approach is compared in terms of lossless and394

near-lossless compression performances with CCSDS-123,395

JPEG-LS, and M-CALIC.396

For the experiments conducted in this paper, we have397

selected a set of images1 collected with different sensors that398

are included in CCSDS MHDC-WG corpus. The sensor names399

and their main features are listed in Table III. The average400

entropy is reported for each image type. The reported values401

are first-order entropy; they represent the entropy of individual402

pixels, without accounting for any dependencies among pixels403

within or between components.404

In [35], the impact of different CCSDS-123 parameters405

that control the operation of the prediction and the entropy406

encoder was evaluated, suggesting that a correct parameter407

1The images used are available at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-
B-Info/TestData

selection had more impact on the predictor stage than in 408

the entropy encoder stage. Concerning the prediction, the 409

parameters local sum type, prediction mode, the number of 410

prediction bands, and predictor adaption rate were the most 411

critical. Extensive experimental evaluations were conducted to 412

find suitable configurations. 413

In this paper, leaning on the results in [35] and after 414

conducting an extensive evaluation also, experimental results 415

are produced for the following parameter configuration: the 416

local sum type and predictor mode depend on the acquisition 417

sensor (as indicated in the last two columns of Table III); 418

the number of prediction bands P is set to 3, since it is a 419

good tradeoff between the computational load and the coding 420

performance; and the predictor adaptation rate νmax is set to 3, 421

since, in general, it yields the best performance. 422

For evaluating the performance of context modeling and 423

probability estimation, we employ the conditional entropy of 424

the prediction residuals, as mentioned above. For the work 425

proposed here, binary entropy coding is employed. To yield 426

results with units in bits per pixel, the binary entropies of 427

all bitplanes are added. Since our context model estimates the 428

probability of p(b = 0|c), the conditional entropy of an image 429

(in bits) is computed as 430

H (λQ) =
I−1∑

i=0

J−1∑

j=0

K−1∑

k=0

15∑

n=0

431

×
{

log2
(

p
(
bn

i, j,k = 0|c
))

if bn
i, j,k = 0

log2
(
1− p

(
bn

i, j,k = 0|c
))

if bn
i, j,k = 1

(10) 432

where λQ denotes the symbols to be entropy coded. 433

A. Context Modeling Function 434

The context model is used to select the probability model 435

that is employed to encode the current symbol. In this first 436

experiment, each of the probability models themselves is 437

estimated using the high-performance method given by (4) 438

employing V = 1 and T = 212, without regard to complexity. 439

Table IV provides the conditional entropy obtained (in bits 440

per sample) for the different context formations defined in 441

Section III-A, i.e., V, H, HV, HVD, S, VS, HS, HVS, and 442

HVDS. The results from Table III suggest the following. 443
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TABLE IV

CONDITIONAL ENTROPY OF THE PREDICTION RESIDUALS (IN BITS PER SAMPLE) FOR THE CONTEXT MODELING FUNCTIONS DENOTED BY V, H, HV,
HVD, S, VS, HS, HVS, AND HVDS. RESULTS ARE REPORTED ON AVERAGE FOR DIFFERENT SENSORS AND ! = 0

TABLE V

CONDITIONAL ENTROPY OF THE PREDICTION RESIDUALS (IN BITS PER SAMPLE) FOR ! = 0 RESULTING FROM THE MAXIMUM PRECISION
AND THE BITWISE PROBABILITY ESTIMATORS. THE V CONTEXT MODEL IS EMPLOYED IN EACH CASE. THE BEST

RESULTS FOR EACH STRATEGY ARE REPRESENTED IN BOLD

1) All of the modeling functions provide significant444

improvements over the pixel entropy reported in445

Table III.446

2) The differences in performance between the modeling447

functions are generally small.448

3) Although the context models H and S yield the worst449

performance on average, they are the best option when450

memory resources are severely limited since they need451

only to store samples from the current line to be452

encoded.453

4) Adding the S sample to a context results in an improve-454

ment of only about 0.01 b/sample.455

5) The V context obtains a coding benefit of 0.02 b/sample456

on average with respect to the H context and only adds457

the previous processed line to its storage requirements.458

In what follows, we select context model V for further eval-459

uation due to its favorable tradeoff among the performance,460

memory resources, and computational load.461

B. Probability Estimation462

This section reports the results obtained by the two differ-463

ent probability estimation strategies discussed in Section III.464

In particular, Table V reports the conditional entropy of the465

prediction residuals resulting from the two different probability466

estimation strategies. In both cases, the V context model 467

is employed. The left of Table V presents results for the 468

maximum precision technique (using division), as defined 469

by (4). These results are shown for different values of T , 470

but V = 1. The right side of Table V presents results for 471

the bitwise strategy, as defined by (5). The same values of T 472

are explored, but always with V = T , as required to avoid 473

division. The results suggest that T = 212 attains the highest 474

performance for both strategies. A larger T degrades the 475

coding performance because the window may contain symbols 476

that are not correlated with the current one. A smaller T 477

degrades the coding performance because there are insufficient 478

symbols to reliably estimate the probabilities p(b|C). The 479

results of Table V also indicate that the low-complexity 480

strategy that employs bitwise operations is as competitive as 481

that employing division. Although not tabulated here for the 482

sake of space, these results hold for the other context modeling 483

functions considered in the previous sections. 484

C. Entropy Coding 485

We note that the context model and probability estimator 486

proposed here can be used with any entropy encoder that codes 487

binary symbols according to a given probability model, such 488

as MQ, IEC or the adopted FLW. Table VI provides the actual 489
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Fig. 5. Visual comparison for the “Aviris Calibrated Yellowstone sc00” image. (a) Original. (b) Proposed approach at 0.43 b/sample (! = 20). (c) M-CALIC
at 0.42 b/sample (! = 30). (d) CCSDS-123 at 0.50 b/sample (! = 80).

TABLE VI

CODING PERFORMANCE (IN Bits per Sample) OF THE PROPOSED
APPROACH USING MQ, IEC, AND FLW ENTROPY ENCODING.

ALL RESULTS EMPLOY CONTEXT MODEL V AND BITWISE
PROBABILITY ESTIMATION WITH T = V = 212

compression results (in bits per sample) obtained using the490

MQ, IEC, and FLW entropy coders. In each case, the results491

are obtained with context model V and the bitwise estimator492

with T = V = 212. From these results, we can see that, on493

average, FLW yields slightly better results than IEC and MQ.494

D. Lossless and Near-Lossless Compression495

The results reported in this section compare the loss-496

less performance of the proposed approach with those of497

JPEG-LS, M-CALIC, and CCSDS-123. Additionally, we com-498

pare its near-lossless performance with those of JPEG-LS499

and M-CALIC and the implementation of CCSDS-123.500

Different quantizers have been combined with our proposal501

and CCSDS-123, to obtain an as fair as possible comparison.502

In particular, the UQ and the USDQ discussed in Section IV 503

are compared. 504

M-CALIC and the near-lossless version of CCSDS-123 are 505

considered to be state of the art in terms of compression 506

performance and computational complexity, and JPEG-LS is a 507

standard technique with near-lossless features. All results for 508

the proposed scheme are produced using the FLW arithmetic 509

coder, context model V, and the bitwise probability estimator 510

having V = T = 212. The results reported in Table VII 511

indicate that our method outperforms both M-CALIC and 512

CCSDS-123 in terms of lossless coding (! = 0) for all 513

sensors. In the near-lossless regime (! > 0), the proposed 514

approach outperforms M-CALIC when the USDQ is used and 515

in most cases for the UQ. In particular, M-CALIC obtains 516

slightly better results than our proposal only for images 517

acquired with sensors AIRS and Hyperion when the UQ 518

is used. On the other hand, the proposed system always 519

outperforms the near-lossless extension of CCSDS-123 for 520

both quantizers. In addition, in general, for the same ! value, 521

the coding performance is better for the USDQ than for UQ. 522

Although achieved bit rates vary widely from image to image, 523

low bit rates can be obtained for all images with a modest 524

value of PAEs (maximum absolute pixel error). 525

E. Visual Comparison 526

To evaluate visual performance, we show a region cropped 527

from an image encoded at the “same” bit rate by the proposed 528

approach with the UQ, M-CALIC, and CCSDS-123. For 529

CCSDS-123, we employ the block-adaptive coder since we 530

want to compare the images at a bit rate lower than 1 b/sample. 531
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TABLE VII

LOSSLESS (! = 0) AND NEAR-LOSSLESS (! > 0) COMPRESSION RESULTS FOR THE PROPOSED APPROACH. FOR COMPARISON, THE RESULTS
FOR JPEG-LS, M-CALIC, AND CCSDS-123 ARE INCLUDED. BOTH A UQ AND A USDQ HAVE BEEN USED IN OUR PROPOSED

APPROACH AND IN OUR NEAR-LOSSLESS EXTENSION TO CCSDS-123 TO PRODUCE RESULTS FOR ! > 0.
THE RESULTS ARE REPORTED IN BITS PER SAMPLE (LOWER IS BETTER)

We note that none of the schemes compared here includes532

precise rate control. For this reason, we have employed the533

following methodology: 1) encode an image using a variety of534

different quantization step sizes for each compression scheme535

and 2) choose those encoded images that yield bit rates as536

close as possible for the three algorithms. We note that a close537

match was not obtained in the case of CCSDS-123, so a step538

size was chosen to afford a higher bit rate than that of the539

proposed approach, thus giving an advantage to CCSDS-123540

in terms of visual performance.541

The results of this process are shown in Fig. 5 for a542

crop from component 122 of the image “Aviris Calibrated543

Yellowstone sc00.” The bit rates obtained are 0.43, 0.42, and544

0.50 for the proposed approach, M-CALIC, and CCSDS-123,545

respectively. The reader is invited to zoom in to see the546

specific visual artifacts arising from the different compression547

schemes. Fig. 5 indicates that the image obtained by the 548

proposed approach has higher visual quality than those by 549

(near lossless) CCSDS-123 and M-CALIC. In particular, the 550

proposed approach preserves edges and textures very well, 551

while M-CALIC results in smoothness and loss of texture. 552

CCSDS-123 also removes texture, but also introduces an 553

annoying “banding” effect, due to the high step size required 554

to reach 0.50 b/sample. 555

VI. CONCLUSION 556

This paper proposes an entropy encoder based on an 557

efficient definition for a context model and the associated 558

strategy to estimate probabilities for use in a fixed-length 559

arithmetic encoder using low-cost bitwise operations. These 560

contributions are incorporated in a coding approach that 561

employs the predictor included in CCSDS-123. A near-lossless 562
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quantizer has also been deployed. The entropy encoder works563

on a line-by-line and bitplane-by-bitplane scanning order. The564

experimental results indicate that the use of a single neighbor565

for the context formation is enough to properly exploit the566

contextual information in the arithmetic encoder and that567

it is possible to estimate the probability employing bitwise568

operations without penalizing the coding efficiency. Further569

results indicate that, on average, our proposal improves the570

current standard version of CCSDS-123 for lossless coding571

by more than 0.1 b/sample. Compared with M-CALIC, our572

proposal provides an average improvement of 0.86 b/sample573

for lossless, whereas for near-lossless, the benefit ranges from574

0.13 to 0.31 b/sample, depending on the allowed PAE.575

REFERENCES576

[1] Consultative Committee for Space Data Systems (CCSDS). [Online].577

Available: http://www.ccsds.orgAQ:1 578

[2] Lossless Data Compression, document CCSDS-121.0-B-1, Blue Book,579

May 1997.AQ:2 580

[3] Image Data Compression, document CCSDS-122.0-B-1, Blue Book,581

Nov. 2005.582

[4] Lossless Multispectral & Hyperspectral Image Compression,583

document CCSDS-123.0-B-1, Blue Book, May 2012.584

[5] JPEG-LS Lossless and Near-Lossless Compression for Continuous-Tone585

Still Images, document, ISO/IEC, 1999.AQ:3 586

[6] E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and587

near-lossless compression of hyperspectral data using CALIC,” IEEE588

Geosci. Remote Sens. Lett., vol. 1, no. 1, pp. 21–25, Jan. 2004.589

[7] F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer, “Low-complexity590

lossless compression of hyperspectral imagery via linear prediction,”591

IEEE Signal Process. Lett., vol. 12, no. 2, pp. 138–141, Feb. 2005.592

[8] G. Carvajal, B. Penna, and E. Magli, “Unified lossy and near-lossless593

hyperspectral image compression based on JPEG 2000,” IEEE Geosci.594

Remote Sens. Lett., vol. 5, no. 4, pp. 593–597, Oct. 2008.595

[9] C.-W. Chen, T.-C. Lin, S.-H. Chen, and T.-K. Truong, “A near lossless596

wavelet-based compression scheme for satellite images,” in Proc. WRI597

World Congr. Comput. Sci. Inf. Eng., vol. 6. Mar. 2009, pp. 528–532.598

[10] S.-C. Tai, T.-M. Kuo, C.-H. Ho, and T.-W. Liao, “A near-lossless599

compression method based on CCSDS for satellite images,” in Proc.600

Int. Symp. Comput., Consum. Control, Jun. 2012, pp. 706–709.601

[11] J. Song, Z. Zhang, and X. Chen, “Lossless compression of hyperspectral602

imagery via RLS filter,” Electron. Lett., vol. 49, no. 16, pp. 992–994,603

Aug. 2013.604

[12] I. Blanes, E. Magli, and J. Serra-Sagrista, “A tutorial on image com-605

pression for optical space imaging systems,” IEEE Geosci. Remote Sens.606

Mag., vol. 2, no. 3, pp. 8–26, Sep. 2014.607

[13] D. Valsesia and E. Magli, “A novel rate control algorithm for onboard608

predictive coding of multispectral and hyperspectral images,” IEEE609

Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6341–6355, Oct. 2014.610

[14] J. Beerten, I. Blanes, and J. Serra-Sagristà, “A fully embedded two-611

stage coder for hyperspectral near-lossless compression,” IEEE Geosci.612

Remote Sens. Lett., vol. 12, no. 8, pp. 1775–1779, Aug. 2015.613

[15] W. Jiaji, K. Wanqiu, M. Jarno, and H. Bormin, “Lossless compression of614

hyperspectral imagery via clustered differential pulse code modulation615

with removal of local spectral outliers,” IEEE Signal Process. Lett.,616

vol. 22, no. 12, pp. 2194–2198, Dec. 2015.617

[16] G. Fang and G. Shuxu, “Lossless compression of hyperspectral images618

using conventional recursive least-squares predictor with adaptive pre-619

diction bands,” J. Appl. Remote Sens., vol. 10, no. 1, p. 015010,620

Feb. 2016.621

[17] N. Amrani, J. Serra-Sagristà, V. Laparra, M. W. Marcellin, and J. Malo,622

“Regression wavelet analysis for lossless coding of remote-sensing data,”623

IEEE Trans. Geosci. Remote Sens., vol. 54, no. 9, pp. 5616–5627,624

Sep. 2016.625

[18] A. B. Kiely and M. A. Klimesh, “Exploiting calibration-induced artifacts626

in lossless compression of hyperspectral imagery,” IEEE Trans. Geosci.627

Remote Sens., vol. 47, no. 8, pp. 2672–2678, Aug. 2009.628

[19] X. Wu and P. Bao, “L∞ constrained high-fidelity image compression via629

adaptive context modeling,” IEEE Trans. Image Process., vol. 9, no. 4,630

pp. 536–542, Apr. 2000.631

[20] B. Aiazzi, L. Alparone, and S. Baronti, “Context modeling for near- 632

lossless image coding,” IEEE Signal Process. Lett., vol. 9, no. 3, 633

pp. 77–80, Mar. 2002. 634

[21] M. J. Slattery and J. L. Mitchell, “The Qx-coder,” IBM J. Res. Develop., 635

vol. 42, no. 6, pp. 767–784, Nov. 1998. 636

[22] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary 637

arithmetic coding in the H.264/AVC video compression standard,” IEEE 638

Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636, 639

Jul. 2003. 640

[23] Information Technology—Lossy/Lossless Coding of Bi-Level Images, 641

ISO/IEC Standard 14 492:2001, Dec. 2001. 642

[24] Information Technology—JPEG 2000 Image Coding System—Part 1: 643

Core Coding System, ISO/IEC, Standard 15 444-1, Dec. 2000. AQ:4644

[25] H.264—Advanced Video Coding for Generic Audiovisual Services, 645

ITU-T, Standard, May 2003.

AQ:5

646

[26] H.265—High Efficiency Video Coding, ITU-T, Standard, Apr. 2015. 647

[27] M. D. Reavy and C. G. Boncelet, “An algorithm for compression 648

of bilevel images,” IEEE Trans. Image Process., vol. 10, no. 5, 649

pp. 669–676, May 2001. 650

[28] F. Aulí-Llinàs, “Context-adaptive binary arithmetic coding with 651

fixed-length codewords,” IEEE Trans. Multimedia, vol. 17, no. 8, 652

pp. 1385–1390, Aug. 2015. 653

[29] D. S. Taubman and M. W. Marcellin, JPEG2000 Image Compression 654

Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer, 655

2002. 656

[30] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless 657

image compression algorithm: Principles and standardization into 658

JPEG-LS,” IEEE Trans. Image Process., vol. 9, no. 8, pp. 1309–1324, 659

Aug. 2000. 660

[31] A. Kiely and M. Klimesh, “A new entropy coding technique for data 661

compression,” Jet Propuls. Lab., California Inst. Technol., Pasadena, CA, 662

USA, Tech. Rep., Jun. 2001. AQ:6663

[32] Lossless Multispectral & Hyperspectral Image Compression, 664

document CCSDS-120.2-G-1, Green Book, Dec. 2015. 665

[33] N. Jayant and P. Noll, Digital Coding of Waveforms. Englewood Cliffs, 666

NJ, USA: Prentice-Hall, 1984. 667

[34] X. Wu and N. Memon, “Context-based lossless interband compression- 668

extending CALIC,” IEEE Trans. Image Process., vol. 9, no. 6, 669

pp. 994–1001, Jun. 2000. 670

[35] E. Augé, J. E. Sánchez, A. Kiely, I. Blanes, and J. Serra-Sagristà, 671

“Performance impact of parameter tuning on the CCSDS-123 lossless 672

multi- and hyperspectral image compression standard,” J. Appl. Remote 673

Sens., vol. 7, no. 1, p. 074594, 2013. 674

Joan Bartrina-Rapesta received the B.Sc., B.E., 675

M.S. (Hons.), and Ph.D. (Hons.) degrees in computer 676

science from the Universitat Autònoma de Barcelona 677

(UAB), Barcelona, Spain, in 2002, 2004, 2006, and 678

2009, respectively. 679

Since 2012, he has been an Associate Professor 680

with the Department of Information and Commu- 681

nications Engineering, UAB. He has co-authored 682

numerous papers in journals and conferences and has 683

guided Ph.D. students. His research interests include 684

image coding topics, computing, and transmission. 685

Dr. Bartrina-Rapesta was a recipient of a Doctoral Fellowship from UAB. 686

He is a Reviewer for magazines and symposiums. 687

Ian Blanes (S’05–M’11–SM’17) received the B.S., 688

M.S., and Ph.D. degrees in computer science from 689

the Universitat Autònoma de Barcelona (UAB), 690

Barcelona, Spain, in 2007, 2008, and 2010, respec- 691

tively. 692

In 2010, he was a Visiting Post-Doctoral 693

Researcher with the Centre National d’Etudes Spa- 694

tiales, Paris, France. Since 2011, he has been actively 695

involved in the creation of new on-board data com- 696

pression standards within the framework of the 697

CCSDS Multispectral Hyperspectral Data Compres- 698

sion Working Group. Since 2003, he has been with the Group on Interactive 699

Coding of Images, UAB, where he is currently an Associate Professor. His 700

research interests include data compression in space-borne instruments. 701

Dr. Blanes was the second-place finisher in the 2007 Best Computer-Science 702

Student Awards by the Spanish Ministry of Education. 703



IEE
E P

ro
of

BARTRINA-RAPESTA et al.: LIGHTWEIGHT CONTEXTUAL ARITHMETIC CODER FOR ON-BOARD REMOTE SENSING DATA COMPRESSION 11

Francesc Aulí-Llinàs (S’06–M’08–SM’14)704

received the B.E. and Ph.D. (cum laude) degrees in705

computer science from the Universitat Autònoma706

de Barcelona (UAB), Barcelona, Spain, in 2002707

and 2006, respectively.708

From 2002 to 2015, he was consecutively funded709

in competitive fellowships, including a Ramón y710

Cajal Grant awarded with the i3 certificate, when711

he carried out two post-doctoral research stages712

with Prof. D. Taubman and M. Marcellin. Since713

2016, he has been an Associate Professor (with714

the Full Professor certificate) with the Department of Information and715

Communications Engineering, UAB. He has participated and supervised716

various projects funded by the Spanish government and the European Union.717

His research interests include image and video coding, computing, and718

transmission.719

Dr. Aulí-Llinàs is a Reviewer for magazines and symposiums.720

Joan Serra-Sagristà (S’97–M’05–SM’11) received721

the Ph.D. degree in computer science from the Uni-722

versitat Autònoma de Barcelona (UAB), Barcelona,723

Spain, in 1999.724

From 1997 to 1998, he was with the University of725

Bonn, Bonn, Germany, funded by DAAD. He has726

co-authored over 100 publications. He is currently727

an Associate Professor (hab. Full professor) with728

the Department of Information and Communications729

Engineering, UAB. His research interests include730

data compression, with special attention to image731

coding for remote sensing applications.732

Dr. Serra-Sagristà was a recipient of the Spanish Intensification Young733

Investigator Award in 2006. He serves or has served as an Associate Editor734

of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and735

the IEEE TRANSACTIONS ON IMAGE PROCESSING, and as the Committee736

Chair for Data Compression Conference.737

Victor Sanchez received the M.Sc. degree from 738

the University of Alberta, Edmonton, AB, Canada, 739

in 2003, and the Ph.D. degree from the Univer- 740

sity of British Columbia, Vancouver, BC, Canada, 741

in 2010. 742

From 2011 to 2012, he was a Post-Doctoral 743

Researcher with the Video and Image Processing 744

Laboratory, University of California, Berkeley, CA, 745

USA. In 2012, he was a Visiting Lecturer with the 746

Group on Interactive Coding of Images, Universitat 747

Autònoma de Barcelona, Barcelona, Spain. He is 748

currently an Associate Professor with the Department of Computer Science, 749

University of Warwick, Coventry, U.K. His research has been funded by the 750

Consejo Nacional de Ciencia y Tecnologia, Mexico, the Natural Sciences and 751

Engineering Research Council of Canada, the Canadian Institutes of Health 752

Research, the FP7 and H2020 programs of the European Union, and the 753

Engineering and Physical Sciences Research Council, U.K. He has authored 754

several technical papers in these areas and co-authored a book (Springer, 755

2012). His research interests include signal and information processing with 756

applications to multimedia analysis, security, image and video coding, and 757

communications. 758

Michael W. Marcellin (S’81–M’87–SM’93–F’02) 759

received the B.S. degree in electrical engineering 760

from San Diego State University, San Diego, CA, 761

USA, in 1983, and the M.S. and Ph.D. degrees 762

in electrical engineering from Texas A&M Univer- 763

sity, College Station, TX, USA, in 1985 and 1987, 764

respectively. 765

Since 1988, he has been with the University of 766

Arizona, Tucson, AZ, USA, where he currently 767

holds the title of Regents’ Professor, and is the 768

International Foundation for Telemetering Chaired 769

Professor. He has authored or co-authored more than 200 publications in these 770

areas. His research interests include digital communication and data storage 771

systems, data compression, and signal processing. 772

Dr. Marcellin is a recipient of numerous honors, including six teaching 773

awards. 774



IEE
E P

ro
of

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES
PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF
proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us
your corrections in list format. You may also upload revised graphics via the Author Gateway.

Please be aware that authors are required to pay overlength page charges ($200 per page) if the paper is longer
than 6 pages. If you cannot pay any or all of these charges please let us know.

This pdf contains 2 proofs. The first half is the version that will appear on Xplore. The second half is the version that
will appear in print. If you have any figures to print in color, they will be in color in both proofs.

The “Open Access” option for your paper expires when the paper is published on Xplore in an issue with page numbers.
Papers in “Early Access” may be changed to Open Access.

If you have not completed your electronic copyright form (ECF) and payment option please return to Scholar One
“Transfer Center.” In the Transfer Center you will click on “Manuscripts with Decisions” link. You will see your article
details and under the “Actions” column click “Transfer Copyright.” From the ECF it will direct you to the payment
portal to select your payment options and then return to ECF for copyright submission.

AQ:1 = Please confirm the title and also provide the accessed date for ref. [1].
AQ:2 = Please confirm the title, document no., and organization name for refs. [2]–[4], and [32].
AQ:3 = Please confirm the title, organization name, and year for ref. [5]. Also provide the document no.
AQ:4 = Please confirm the title, organization name, standard no., and year for ref. [24].
AQ:5 = Please confirm the title, organization name, and year for refs. [25] and [26]. Also provide the

standard no.
AQ:6 = Please confirm the author name, title, department name, organization name, organization location, and

year for ref. [31]. Also provide the report no.


