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I
n the field of geophysics, 
huge volumes of informa-
tion often need to be pro-
cessed with complex and 
time-consuming algo-

rithms to better understand the 
nature of the data at hand. A 
particularly useful instrument 
within a geophysicist’s toolbox 
is a set of decorrelating trans-
forms. Such transforms play a 
key role in the acquisition and 
processing of satellite-gathered 
information, and notably in the 
processing of hyperspectral 
images. Satellite images have a 
substantial amount of redun-
dancy that not only renders the 
true nature of certain events 
less perceivable to geophysicists 
but also poses an issue to satellite makers, who have to exploit this 
data redundancy in the design of compression algorithms due to 
the constraints of down-link channels. This issue is magnified 
for hyperspectral imaging sensors, which capture hundreds of 

 visual representations of a given 
target—each representation 
(called a component or a band) 
for a small range of the light 
spectrum. Although seldom 
alone, decorrelation transforms 
are often used to alleviate this 
situation by changing the origi-
nal data space into a representa-
tion where redundancy is 
decreased and valuable infor-
mation is more apparent. 

INTRODUCTION
The Karhunen-Loève transform 
(KLT) is a powerful decorrelat-
ing transform. Once it is applied, 
no correlation remains among 
its outputs. However, the KLT 
has several drawbacks. It has a 

very high computational cost as well as high memory require-
ments and a lack of component scalability, as described below. 
Because of these facts, it has not achieved widespread use in prac-
tice, even though it dates back more than 60 years. To alleviate 
these drawbacks, researchers have resorted to employing well-
known approaches that help achieve a similar performance but 
 without the burdens of the original technique. One of these 
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 well-known approaches is a divide-and-conquer strategy, with 
hundreds of years of history behind it (the Euclidean algorithm to 
compute the greatest common divisor of two numbers dates to 
several centuries BC). 

Divide-and-conquer spectral decorrelation is a recent devel-
opment that allows the KLT to be approximated at a fraction of 
the computational cost, with lower memory requirements, 
while also providing some component scalability. Having effi-
cient approximations of the KLT is important because results 
can be obtained earlier in time and with less hardware costs. 
Not only that, it allows equipping satellites, which have signifi-
cant constraints in their computational resources, with better 
redundancy-removing methods in their image coding units, 
enabling them to increase the resolution of the images they 
acquire. 

The field of hyperspectral image coding is where divide-and-
conquer decorrelation strategies have flourished most vigorous-
ly, motivated in part by the large potential benefits. Different 
research teams have proposed several contributions applicable 
to this area [1]–[6]. In an historical context, divide-and-conquer 
spectral decorrelation is a very recent topic, with contributions 
starting five years ago [7], [8], and with most contributions 
occurring in the last two years. This article focuses on develop-
ments in the use of divide-and-conquer spectral decorrelation, 
mostly for hyperspectral image coding. Nonetheless, we also 
show other areas that may also benefit from this approach. 

The KLT is a transform that adapts to the statistics of its 
input to provide decorrelated output vectors. It is defined by 

 yi5KLTSX
1xi 2 5QT 1xi2 x 2 .

The forward application of the transform consists of the matrix/
vector multiplication of QT and 1xi2 x 2 , where QT is specially 
crafted in a training stage from the eigendecomposition of the 
covariance matrix SX of the whole set of input data vectors 
X5 5xi64i. The term x is the input vector average, used to 
guarantee centered or zero-mean data. As QT and x are different 
for each input, the inverse transform requires that both are pre-

served as side information along with the output data set 
Y5 5 yi64i. 

The computational cost of the KLT is dominated by the qua-
dratic cost of the matrix/vector multiplication that occurs on its 
forward and inverse applications, and partially by the covariance 
matrix calculation. Divide-and-conquer strategies tackle this 
issue by (instead of applying one large transform) dividing the 
KLT into a collection of smaller transforms with a lesser overall 
cost, and with an important point in mind: smaller transforms 
have to be arranged in a way that they are applied only where 
they are more effective. To this end, it is worth noting that 
transforms provide little overall benefits, if any, in portions of 
data with low amounts of information regardless of how corre-
lated they are. An example of a possible organization is shown in 
Figure 1. In this example, a first level of KLT transforms is 
applied to provide local decorrelation, with the most significant 
half of the outputs of each transform forwarded to a next level. 
This process is applied recursively to account for global correla-
tion. Note that, in this example, “less important” portions are 
indeed successively excluded at each level from the decorrela-
tion process. 

In the example, one large transform is replaced by seven 
smaller transforms each of one fourth of the original size. Since 
the transform cost is mainly quadratic, each smaller transform 
has one sixteenth of the original cost, yielding a cost for the 
whole approach of 7/16 . 45% of the original cost. Larger 
inputs and more sophisticated methods yield further cost reduc-
tions. The approach of the example above also improves compo-
nent scalability, which is the ability to gain random access to 
specific components in a compressed codestream, without hav-
ing to decompress the entire codestream. This ability is greatly 
affected by computational dependencies in the inverse trans-
form. For example, in Figure 1, there are only eight outputs 
(highlighted in yellow) required to be able to perform inverse 
transform operations to obtain input 12, whereas for the KLT 
all 16 outputs would be required. More generally, having a low 
degree of computational dependency allows for partial applica-
tions of the forward and inverse transforms, which in turn 
allows decoding of portions of a compressed image without hav-
ing to process or download the full compressed data. It also may 
allow online processing, where, as the original image is read, 
the compressed codestream is progressively produced, without 
having to allocate memory for the whole image. In practice, 
online compression also requires careful management of the 
memory needed for designing the transform (i.e., buffering of 
training data). This is discussed subsequently in the context of 
the pairwise orthogonal transform (POT). 

With schemes like the one above, a full KLT can be closely 
approximated by a collection of smaller transforms. However, 
even for a given divide-and-conquer strategy, there is a combi-
natorial explosion in the number of possible divide-and-conquer 
schemes, and not all of them have equal decorrelating perfor-
mance. For example, with no other constraint than to follow the 
successive-refining pattern as given in Figure 1, there are as 
many as 8.77 # 1026 possible divide-and-conquer schemes for a 

[FIG1] Example of a divide-and-conquer strategy for a 16-input 
KLT. The dependencies of input 12 are highlighted in yellow.
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16-input KLT (it is estimated that the number of seconds since 
the Big Bang is of the order 1017). To further exacerbate the sit-
uation, actual data do not always follow the Gaussian model on 
which the theory is based, and therefore the quality assessments 
that the Gaussian model provides are insufficient to guide the 
selection of the best possible scheme. In the face of such issues, 
as will be seen in the next section, researchers in this field have 
resorted to the use of heuristics and empirical tests to select the 
“best” strategy for a particular task. 

Other tools and methods related to spectral decorrelation, to 
the KLT, and to divide-and-conquer strategies, not central to this 
article, but nonetheless worth mentioning, are now reported: 

 ■ On a KLT, a direct calculation of the covariance matrix is 
an expensive operation. In [9], the use of statistical sampling 
is introduced to reduce this cost to a negligible percentage. 
Simple random sampling of 1% of the input is usually 
enough to obtain sufficiently good approximations of a cova-
riance matrix with minimal variation of the KLT transform. 
Sampling is implicitly used throughout this article whenever 
possible. 

 ■ It is trivial to see that the KLT application can be expressed 
as a matrix/matrix product if all input elements are trans-
formed at once. In that case, the use of subcubic matrix mul-
tiplication algorithms, such as the Strassen algorithm [10], 
yields a subquadratic per element application of the KLT. 
Divide-and-conquer strategies are complementary to fast 
matrix multiplication algorithms, as the former provides 
computational cost reductions by changing the applied oper-
ation by a simpler approximation and may still use the latter 
in its matrix operations. Results provided in this article do 
not incorporate these methods, as fast matrix multiplication 
is still an evolving field and would require a much deeper 
review of the subject. 

 ■ While the KLT is the optimal decorrelating transform 
under the assumptions of jointly Gaussian data and scalar 
quantization (but not only under this set of assumptions), 
others have tried to provide optimal transforms under other 

criteria. This is the case for the independent component 
analysis [11], [12], which tries to maximize statistical inde-
pendence of non-Gaussian signals (originally designed as an 
extension to the KLT), and also the case for the optimal spec-
tral transform and its variations that minimize end-to-end 
mean square error (MSE) under high-resolution quantiza-
tion hypotheses [13], [14]. Minor coding gains can be 
obtained at the expense of training stages with cost increases 
of varying degrees. 

 ■ Finally, other related tools worth mentioning are wavelet 
transforms [15], [16]. Wavelets provide moderate spectral 
decorrelation at low computational cost and will be used in 
this article to provide a reference framework due to their 
presence in the hyperspectral image coding literature (see 
[17] for a detailed review).

REVIEW OF DIVIDE-AND-CONQUER STRATEGIES
The benefits of employing divide-and-conquer strategies in a 
plethora of disciplines have been well established [18]. In the 
following sections, we will illustrate the benefits of divide-and-
conquer strategies for hyperspectral image processing. Here we 
provide a chronological review of divide-and-conquer strategies 
for spectral decorrelation. 

Divide-and-conquer strategies on transforms for spectral 
decorrelation have, as explained above, a relatively short histori-
cal time line, originated by recent developments in computing 
hardware that have enabled a more widespread adoption of the 
KLT as a decorrelating transform. Once the technological obsta-
cles were overcome, independent research teams developed a 
variety of strategies almost in parallel, with perhaps one strate-
gy, the recursive subdivision, leading the way. Existing strate-
gies can be classified in four families according to their general 
traits: recursive, single-level, two-level, and multilevel strate-
gies. These families are described here in chronological order of 
publication and are thoroughly compared. For the reader’s con-
venience, illustrative diagrams of each family of divide-and-con-
quer transforms are provided in Figure 2. 

[FIG2] Illustrative diagrams of divide-and-conquer strategies.
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The recursive strategy [7], [8] is the only member of the 
recursive family and was not originally proposed for remote-
sensing image processing, although we have adapted it for 
hyperspectral image coding. This strategy is based on a succes-
sive subdivision of a KLT into three half-sized KLTs. Two half-
sized KLTs provide a first level of local decorrelation, while the 
third one provides partial global decorrelation from the outputs 
of the other two. This three-element division is applied recur-
sively for each half-sized KLT. The use of this recursion is math-
ematically convenient to prove a computational complexity 
below that of the KLT, on the assumption of a Toeplitz covari-
ance matrix. Note that under that assumption, both a KLT and a 
Fourier transform can be used to diagonalize the covariance 
matrix. Apart from a good theoretical decorrelating perfor-
mance, the recursive approach also exhibits experimental per-
formance very close to that of the KLT (as opposed to a Fourier 
transform). The recursive strategy provides a good starting 
point into the subject, but, as will be discussed later, there are 
other strategies that provide a similar approximation penalty/
performance with a lower computational cost. 

The second family of divide-and-conquer strategies is the 
one of single-level strategies [3], [4], which are based on a sin-
gle level of small transforms that provide only local decorrela-
tion. Even if the decorrelation properties of a single-level 
strategy are limited, since it produces low amounts of side 
information, it may work well on situations where the size of 
the side information is a significant portion of the bit rate 
budget, i.e., at very low bit rates, or when the spatial dimen-
sions are notably small. 

The third family of divide-and-conquer strategies to a KLT 
subdivision is that of two-level strategies [1], [2]. The idea is to 
achieve decorrelation locally on a first level and globally on a sec-
ond level, but, as opposed to the former recursive strategy, with-
out any recursion. Instead, this family segments the first level of 
decorrelation in a larger number of small KLTs, and, in a second 

level, the important outputs of a first-level KLT are decorrelated 
together with the equivalent output of the other first-level KLTs. 
We refer to this approach as a static two-level strategy if used as 
just described, or as a dynamic two-level strategy if some prun-
ing is performed after the transform is trained to sever “less con-
tributing” inputs of second-level KLTs. Once more we refer the 
reader to Figure 2 for a clearer idea of the heuristics. 

Finally, the last family of methods is the one of multilevel 
strategies [3], [5], [6], which includes four different subtypes of 
strategies. Multilevel strategies are based on a progressive siev-
ing over multiple levels that yields local to global decorrelation 
over multiple levels. At each level, components are sliced into 
clusters of KLTs, and for each cluster some of its outputs are for-
warded to a next level, until one last level decorrelates together 
all the remaining components. It is particularly notable that 
these strategies do not incorporate a permutation of compo-
nents between each level, and nonetheless, as will be shown 
below, they still provide good performance. 

 ■ The regular strategy is the most naive family member: it 
includes strong regularity constraints to keep at bay the com-
binatorial explosion of feasible multilevel structures. 

 ■ As was the case for two-level strategies, we can also devise 
static and dynamic approaches, that help to partially lift the 
aforementioned constraints with the use of eigenthreshold-
ing methods, which are analytical methods used to quantify 
the relevant outputs of each KLT. “Eigenthresholding, or 
Where to ‘Cut’ ” introduces  pioneering work for these selec-
tion models. On the static variant, the possible structures are 
reduced from millions to a few hundred with eigenthreshold-
ing and within-level regularity, e.g., at each level of the mul-
tilevel structure, the clusters are all of the same size, and the 
same number of components is forwarded to the next level. 
The best structures are empirically selected for and from a 
training data set. 

 ■ On the other hand, the dynamic variant produces one 
structure of equal cluster size in all levels, but then a differ-
ent number of important outputs for each small KLT may be 
selected as the transform is applied. 

 ■ The fourth member of this family is the POT, character-
ized by its minimal structure of two-component KLTs. The 
POT is a particular case of regular multilevel worth men-
tioning on its own due to the additional benefits of its mini-
mal structure, specifically, the possibility of operation under 
strong memory constraints as well as the elimination of the 
numerically cumbersome eigendecomposition procedure 
required in the other structures. More details on the POT are 
provided in the section “Practical Cases.”

COMPARATIVE EVALUATION
We have summarized above eight divide-and-conquer heuristic 
strategies, and while all of the described strategies provide 
approximations to the KLT, each entails a different tradeoff 
among distinct performance characteristics. In the current 
scope, such characteristics of a strategy include: coding perfor-
mance, computational cost, component scalability, and 

There are methods whose purpose is to estimate the 
number of factors that have influenced the observed 
data, be it the factors involved in a chemical reaction 
[19] or the “minerals” present in a hyperspectral scene 
[20]. Oftentimes, these methods are based on determin-
ing how many components should be retained after a 
KLT, in which case they can be properly categorized as 
eigenthresholding methods (i.e., a threshold on the 
eigenvalues of the KLT). 

One famous test is the “Scree test” from Cattell [21], which 
is simply based on plotting, in descendant order, the varianc-
es of the KLT outputs and selecting components up to the 
sharp break in the plot by visual inspection. According to 
Cattell himself [22], such a method would not have pleased 
the statistician community, yet the method was widely 
adopted by psychologists with quite reliable results (his arti-
cle has received more than 2,900 citations since 1966). 

EIGENTHRESHOLDING, OR WHERE TO “CUT” 
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 memory requirements. We direct readers unfamiliar with such 
characteristics to “How to Evaluate the  Success of a Strategy,” 
providing a brief description of the characteristics and their rel-
evancy as well as an explanation of how to measure them. The 
different tradeoffs of the existing strategies are shown in Table 1. 
For the purpose of comparison, the KLT and three common 
wavelet transforms have also been included. On one side of the 
comparison there is the KLT, with top coding performance but 
lower scores on all the other characteristics, while on the other 
side there are the wavelets, with extremely low cost as well as 
low memory requirements, but with only moderate spectral 
decorrelation performance. In between the KLT and wavelets, 
there are the divide-and-conquer strategies, which provide a 
gradient of tradeoffs from one extreme to the other. 

It is interesting to look at the different tradeoffs, since not all 
transforms provide reasonable compromises. In Figure 3, the 
characteristics of each transform are plotted in a three-dimen-
sional space corresponding to coding performance, computa-
tional cost (speed), and component scalability. Each point in the 
plot is projected to the coordinate planes to show the tradeoffs 
that each method provides for a given pair of characteristics. 
From the plot, it can be seen that wavelets do not always provide 
a competitive deal between coding performance and computa-
tional cost in relation to divide-and-conquer strategies. In par-
ticular, as indicated by the double sided arrow in the speed/
coding performance plane, the CDF 9/7 wavelet provides poor 
performance in relation to its speed. We also refer the reader to 
“A Few More Degrees of Freedom” for a deeper understanding of 
the different tradeoffs provided by each spectral transform.

PRACTICAL CASES
Three examples of practical usage furnish evidence of the ben-
efits of divide-and-conquer strategies. The first example is a 
step-by-step application of the recursive strategy, posed such 
that interested readers can reproduce it easily. The second 
example reports the potential of the POT assuming a use case 
on board a satellite. Due to its extremely low complexity, it 
may be used to improve coding performance, despite the 
resource-constrained environment of satellites. The third 
example reports the use of divide-and-conquer strategies to 
improve the computational performance of a Reed-Xiaoli (RX) 
anomaly detector, where the distance operations are normally 
performed in the KLT domain. The objective of this last exam-
ple is to show the applicability of divide-and-conquer strate-
gies on geophysical signal processing fields other than 
hyperspectral image coding. 

RECURSIVE STRATEGY EXAMPLE 
FOR AVIRIS HYPERSPECTRAL IMAGE CODING
In this first example, divide-and-conquer is applied with the 
recursive strategy using four recursion steps on a remote-
sensing image that is later compressed using a lossy image 
coder. To ensure the reproducibility of this example, the 
image used is the widely distributed hyperspectral image 
“Cuprite” from the AVIRIS sensor from NASA’s Jet Propulsion 
Laboratory, and the image coder is the “Kakadu v6.4.1” imple-
mentation of JPEG2000 [24]. The image technical name is 
“f970619t01p02_r02,” and its size is 614 × 2,206 × 224 pixels 
(width × height × bands).

To properly evaluate the benefits and advantages of the sever-
al approaches for a divide-and-conquer strategy for hyperspec-
tral image processing, different criteria may be considered, 
mostly depending on the process at hand. Here we report 
those commonly used when addressing hyperspectral image 
coding. 

Coding performance is a tradeoff between quality and bit 
rate, where the higher the quality for a given bit rate, the bet-
ter the coding performance is. Quality is computed comparing 
the original image x with the recovered image x̂: several mea-
sures can be taken, although in the case of remote-sensing 
images, it is customary to employ a signal-to-noise ratio (SNR) 
defined for instance as 

SNRs25 10 # log10a s2

MSE
b,  1dB 2 ,

where s2 is the variance of the input image and MSE is 

MSE5
1

NxNy Nz
a

i
a

j
a
k

3x 1 i, j, k 2 2 x̂ 1 i, j, k 24 2. 
The bit rate is the normalized length of the compressed 
file produced by the coding technique after applying the 
spectral decorrelation transform, and is reported herein 

using the unambiguous unit: bits per pixel per band 
(bpppb). 

Computational cost is computed taking into account the 
number of operations that need be performed for applying 
a given spectral decorrelation transform. The lower the 
computational cost, the higher the speed of applying that 
particular transform. It can be measured either in number 
of operations or in seconds. 

Component scalability is defined as the ability to retrieve a 
single component, as is often needed in remote-sensing appli-
cations, e.g., in false color composition for visualization pur-
poses. The lower the number of spectral components (or 
bands) that are needed for inverting the spectral decorrelation 
transform if only a single component is to be retrieved, the 
higher the scalability. Component scalability aims to employ as 
low a number of components for inverting the spectral decor-
relation as possible, both because of memory constraints and 
because of faster  computation. 

Memory requirements is a criterion that assesses the peak 
computer memory capacity needed to apply the spectral 
decorrelation transform, where lower is better, since this trans-
form is sometimes devised for application on board aircraft or 
satellites, with restricted memory capability. It is often mea-
sured in megabytes.

HOW TO EVALUATE THE SUCCESS OF A STRATEGY
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The first step towards this example’s purpose is to infer the 
structure of the transform, or equivalently define the sequence 
of small KLTs that have to be applied. The spectrum at each 
spatial location is taken as an input vector to the transform, 

yielding 614 × 2,206 input vectors each of dimension 224. 
Given the 224-input transform and the four recursions, a 
sequence of 81 small KLTs, each of 14 inputs, is applied as 
shown in Figure 4. 

Each divide-and-conquer strategy generally has a few degrees 
of freedom, e.g., the recursion depth on the recursive strategy, 
or the number of first-level clusters, and the number of for-
warded outputs on the static two-level strategy. Usually, 
authors of strategies sort through the possible variations with-
in a strategy with empirical experimentation and recommend 
one or two items as the representative elements. 

This is the case of Figure 3 and Table 1, where the perfor-
mance of a single representative element for each strategy 
is reported. This approach is necessary for an understand-
able presentation of ideas, but it is also necessary to bring 
an element comparison to tractable size. 

Nonetheless, it is an interesting exercise to compare struc-
tures in the span of their degrees of freedom, even though 
the comparison has to be limited in scope. Such a compari-
son is provided in Figure S1, where the relation between 
coding performance and computational cost is shown (the 
former measured as the coding performance difference 
with the original KLT, and the latter measured as the data 
samples transformed per unit of time). The scope of this 
comparison has been limited to the relative coding perfor-
mance difference with respect to a full KLT on just one 
image when coded in combination with JPEG2000 [24] at 
the fixed bit rate of 1 bpppb, and only some of the best 
variations of each strategy are shown. While a narrowly 
scoped example like this is not useful to extract global con-
clusions, it is still insightful to the understanding of the 
particularities of the strategies. 

In Figure S1, it can be observed that, by changing the free 
parameters of structures, a gradation is produced between 
high cost/coding performance to low cost/coding perfor-
mance. In this particular case, the best tradeoffs are provid-
ed by the recursive strategy on high coding performance, 
followed, as coding performance decreases, by the regular 
multilevel strategy, the static multilevel strategy, and the 
POT. Three wavelets are also included as reference, and 
two of them provide the best tradeoffs on the lowest cod-
ing performance segment. 

Results for principal component analysis (PCA) are also 
included. The KLT and PCA are basically the same opera-
tion, but the latter terminology is often used to indicate 
that the transform only retains the “principal” components 
(PCs) of its output. Since PCA uses a smaller number of 
operations than the KLT because not all outputs need to be 
produced, the question of whether to use PCA as an 
approximation of the KLT often arises. Using a PCA instead 
of a divide-and-conquer strategy for KLT has its merits, as, 
by producing just a few outputs, future processing stages 
are simplified (in this case JPEG2000 has less bands to 
code). However, there are two drawbacks. One is that the 
coding performance and speed relation of the PCA alone is 
quite bad, so it is very dependent on the speed gains of 
simpler future stages. The other drawback, and perhaps 
the most problematic, is that the number of PCs to be kept 
varies with different images and bit rates, and that number 
is hard to guess before the coding has taken place.

A FEW MORE DEGREES OF FREEDOM 

[FIG S1] Comparison of spectral transforms tradeoffs between coding performance and computational 
cost (speed) when encoding an image at a target bit rate of 1 bpppb.
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Once the structure is defined, each small KLT is applied. 
Here, the small transform on bottom left of the diagram is 
detailed. Since the elements of the input vector to the first small 
KLT have mean values other than zero (i.e., 962.9, 1275.8, 
1752.7, c), the mean is subtracted from each sample to force 
a zero mean value. As the outputs of a KLT have zero mean, 
some of the other small transforms do not need this adjustment. 
Then, the covariance matrix is calculated and diagonalized with 
a standard QR algorithm, obtaining QT. In this case, 

 QT5 ± 0.037 0.053 c 0.399
0.216 0.350 c 20.321

( ( f (
0.003 0.003 c 20.368

≤ ,

which is applied to its input at this point. The 80 remaining 
KLTs are applied similarly, in a bottom-up order, preserving 
the dependencies between individual KLTs. 

After all of the KLTs have been applied, the result can be 
assumed mostly free of interband redundancy, and each band 
can be coded independently. Using the JPEG2000 coding sys-
tem provides efficient coding within a band and allows a differ-
ent rate allocation for each band that maximizes the overall 
coding performance. 

With the described approach, and targeting at a rate of one 
bpppb, the combination of recursive subdivision and JPEG2000 
yields an SNR of 54.12 dB, which is only 0.01 dB lower than when 
a full KLT is used. 

To decompress, one simply needs to reverse each individual 
operation in the inverse order in which they where applied, i.e., 
first the JPEG2000 codestream is decoded and then, using the 
side information, each of the small KLTs, starting with the last 
one applied in the coding process. 

Counting the arithmetic operations performed in this 
example yields a total of 273 Gigaoperations for the KLT, 
or in other words, more than 4 min on a theoretical 1 

[TABLE 1] QUALITATIVE SUMMARY OF SPECTRAL TRANSFORMS, NOTABLY OF THE DIVIDE-AND-CONQUER STRATEGIES. 
THE PERFORMANCE OF EACH TRANSFORM FOR A GIVEN CRITERION IS RANKED FROM  (WORST) TO  (BEST), 
ACCORDING TO QUANTITATIVE DATA FROM [23].

AUTHORS
PUBLICATION 
DATE REFERENCE(S)

CODING 
PERFORMANCE

COMPUTATIONAL 
COST

COMPONENT 
SCALABILITY

MEMORY 
REQUIREMENTS

KLT

 KLT KARHUNEN, 
LOÈVE

1946 [24], [25]

DIVIDE-AND-CONQUER STRATEGIES

 RECURSIVE

 RECURSIVE WONGSAWAT, 
ORAINTARA, 
RAO

2006 [7], [8]

SINGLE-LEVEL

 SINGLE LEVEL BLANES, 
SERRA-SAGRISTÀ; 
DU, ZHU, YANG, 
FOWLER

2009 [3], [4]

TWO-LEVEL

  STATIC 
TWO LEVEL

SAGHRI, 
SCHROEDER, 
TESCHER

2009 [1], [2]

  DYNAMIC 
TWO LEVEL

SAGHRI, 
SCHROEDER, 
TESCHER

2009 [1], [2]

MULTILEVEL

  REGULAR 
MULTILEVEL

BLANES, 
SERRA-SAGRISTÀ

2009 [3]

  STATIC 
MULTILEVEL

BLANES, 
SERRA-SAGRISTÀ

2010 [5]

  DYNAMIC 
MULTILEVEL

BLANES, 
SERRA-SAGRISTÀ

2010 [5]

  PAIRWISE 
ORTHOGONAL 
TRANSFORM

BLANES, 
SERRA-SAGRISTÀ

2011 [6]

WAVELETS

 WAVELETS CDF 9/7 COHEN, 
DAUBECHIES, 
FEAUVEAU

1992 [16]

 WAVELETS CDF 5/3 COHEN, 
DAUBECHIES, 
FEAUVEAU

1992 [16]

 WAVELETS HAAR HAAR 1910 [15]



IEEE SIGNAL PROCESSING MAGAZINE   [78]   MAY 2012

Gigaflop/s central processing unit (CPU) just for the spec-
tral transform. At virtually no quality loss, by using the 
recursive strategy, the total amount of operations is 
reduced to 31%, or about 1.2 min. By way of contrast, if a 
DWT CDF 9/7 was used, it would have required fewer than 
9 s, but it would have had a significant coding quality 
penalty of 3.46 dB. 

While the KLT cost might be quite a nuisance while one 
waits a few minutes for an image to decode, there are important 
use cases that forbid such a high cost. For example, with a KLT 
it is not possible to perform real-time coding of hyperspectral 
images. This is a quite important use case for remote-sensing 
acquisition hardware, for which hyperspectral images must be 
coded efficiently under the hardware constraints of such 

 devices. The following example addresses 
this use case explicitly. 

POT STRATEGY EXAMPLE FOR 
ON-BOARD SATELLITE APPLICATION
Due to the radiation hardening required 
in space-borne hardware as well as other 
factors such as smaller economies of scale, 
weight restrictions, or power-consump-
tion limitations, satellite hardware is often 
heavily constrained in its capabilities in 
comparison with the average office desk-
top computer. The POT divide-and-con-
quer strategy is specially designed for 
satellite image coding and employs a min-
imal multilevel structure, where only two 
components are decorrelated at once. 

In addition to the low computational 
cost, using a minimalistic strategy 
allows the reduction of the memory 
requirements for the transform and a 
much simpler eigendecomposition 
stage. High memory requirements for 
the KLT are caused by the fact that the 
KLT is a two-stage transform: it is first 
trained over the whole input, and then it 
is applied. Having to keep the whole 
image in memory while the transform is 
trained is the main source of memory 
consumption. Taking into account that 
satellite imaging devices usually capture 
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[FIG3] Comparison of spectral transforms tradeoffs among coding performance, 
computational cost (speed), and component scalability.

[FIG4] Structure of the recursive divide-and-conquer strategy when applied to 224 components with a recursion depth of four.
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[FIG5] Line-based application of a POT divide-and-conquer strategy for on-board satellite image coding.

images line-by-line as the satellite moves along its orbit, a 
natural solution for this problem would be to use blocks of 
image lines and transform them independently; however, this 
solution clashes with the relatively high amount of side infor-
mation that would be required by the KLT of each block. On 
the other hand, the POT has fewer degrees of freedom and 
requires a much smaller amount of side information that 
allows the use of spatial blocks. Such blocks may even be as 
small as a single image line. In Figure 5, a graphical represen-
tation of a single-line application of the POT is shown. 

The eigendecomposition stage (i.e., where the covariance 
matrix is diagonalized and QT is obtained) is the most 
complicated (not the most time-consuming) stage of 
the whole KLT and, by extension, of a divide-and-conquer 
approach. This process is usually performed by a QR algorithm, 
or possibly by a Jacobi eigenvalue algorithm if the process needs 
to be parallelized. Both algorithms are well-known numerical 
iterative methods that converge to a solution, and nonetheless 
both of them present very complicated numerical instabilities 
that pose significant risks apart from the implementation 
complexity. In contrast, as the POT uses only two-component 
KLTs, the  transform matrix QT5 Qp t

q uR  can be derived in a 
 straightforward manner from SX5 Qa b

b dR,  to  yield 
t52q5 1b/|b| 2 !11/2 2 2 11a2 d 2 /2s 2 ,  p5 u5 !12 t2,  
and s5 !1a2 d 2 21 4b2. Note that all the elements in QT can 
be produced from t alone, and thus the side information for the 
POT are the offsets to force a zero mean on each input and the 
value of t for each two-component transform. 

Figure 6 reports a comparison of the performance of the 
line-based POT in relation to the KLT and the CDF 9/7 wavelet 
when used in combination with JPEG2000, to encode an image 
captured by the EO-1 satellite while orbiting over the Erta Ale 

volcano (Afar Region, Ethiopia). For this data type, the POT pro-
vides performance between the KLT and wavelets, with 
extremely low complexity and memory requirements as needed 
to operate on satellite equipment. At low-medium to high bit 
rates (usually the only ones of interest in practice), the perfor-
mance of the line-based POT is above that of the DWT and espe-
cially close to that of the KLT. We attribute this closeness to the 
KLT due to the relatively low SNR of the Hyperion sensor itself. 
At very low bit rates, the performance of the POT can be under-
mined by the required side information. Even though the side 
information is only, for each row, one parameter per two-com-
ponent transform and one offset per input, it amounts to 0.07 
bpppb for this example, as this is a rather narrow image of only 
256 columns. If this were an issue, applying the transform in 
blocks of two or three lines would address this problem. 

Following with the theoretical 1 Gigaflop/s CPU of the 
previous example, even if not corresponding with most space-
borne hardware, the application of both the forward DWT CDF 
9/7 and the forward POT would stay below 3 s, while the KLT 
would take more than 1.5 min. 

HYPERSPECTRAL IMAGE PROCESSING 
EXAMPLE FOR ANOMALY DETECTION
A third example of the use of a divide-and-conquer strategy is 
in combination with the conventional RX anomaly  detector 
[25]. Among others, airborne detection of land mines is one 
of the applications of an anomaly detector. The conventional 
RX discussed here is the baseline reference in this research 
field, and more powerful alternatives exist such as support 
vector methods [26] or Kernel RX [27]. The objective of this 
example is to provide some insight into how the strategies 
presented throughout this article can be extended to other 
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fields of interest of the geophysics  community in addition to 
image coding; not to improve the state of the art on said 
fields, which would be the objective of another article. 

An RX anomaly detector is based on how distant a pixel r in 
a hyperspectral image is from the overall background of that 
image as measured using the Mahalanobis distance, 

 RX 1r2 5 1r2m2TSX
21 1r2m2 ,

where m is the average background. If the covariance matrix is 
a diagonal matrix, then the problem is simplified. By perform-
ing the substitution SX

215QL21QT, the problem becomes 

 RX 1r 2 5 1QT 1r2m 22TL21 1QT 1r2m 2 2 , 
where QT 1r2m 2  is the KLT of 1r2m 2 . As the matrix multipli-
cation by QT can be applied approximately by a divide-and-con-
quer strategy, the computational cost of the anomaly detector is 
diminished. 

In this example, the RX detector is used on a hyperspectral 
image acquired near the Moffett Federal Airfield in California. 
An RX detector is an unsupervised classifier that ranks how 
anomalous each location is, and then locations ranked over a 
threshold (in this case, the top 2%) are classified as anomalies. 
Table 2 shows results when using several divide-and-conquer 
strategies. Detector performance is measured with the KLT as 
reference, either in the column “Preservation of Classification,” 
which is the percentage of locations that do not change class 
(anomaly/no anomaly) in comparison with the KLT, or in the 
column “Anomalies Preserved,” which is the percentage of the 
anomalies that are detected in both classifications. Detector per-
formance decreases along with the method cost, with up to 54% 
of the anomalies preserved with only 4% of the original cost. It 
is worth noting that the anomalies that are not preserved are 
often situated on the edges of anomaly zones, with no signifi-
cant variations on locations or shapes of the detected zones. 
Figure 7 shows a visual representation of the detector output. 

CONCLUSIONS
Each year, remote-sensing technologies gather an increasing 
amount of hyperspectral information, which is treated with 
more sophisticated data processing methods demanding large 
amounts of computing resources. Spectral decorrelation is a 
widely used method with a significant computational cost, par-
ticularly in the image coding context that is described in this 
article. We have shown that divide-and-conquer strategies miti-
gate these issues with schemes that provide approximate decor-
relation at a fraction of the original cost as well as with 
improved component scalabilities and lower memory require-
ments. We have reported, in three practical cases of divide-and-
conquer decorrelation strategies for hyperspectral images, the 
benefits and advantages of these strategies, and given insights 
into the applicability of these technologies to adjacent fields, 
which we hope may foster its use in other research fields. 

[FIG6] Coding performance of POT in comparison to the KLT and 
the CDF 9/7 wavelet. Performance measured in variance SNR 
(SNR s2) in relation to the image bit rate. 
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[TABLE 2] PERFORMANCE OF AN RX DETECTOR 
WHEN APPLIED USING DIVIDE-AND-CONQUER STRATEGIES.

METHOD 
PRESERVATION OF 
CLASSIFICATION

ANOMALIES 
PRESERVED COST 

KLT (ORIGINAL) 100% 100% 100% 

RECURSIVE 99.81% 90.54% 32% 

STATIC MULTILEVEL 99.68% 84.21% 8% 

DYNAMIC TWO LEVEL 99.09% 54.38% 4% 

Original Image
(False Color)

KLT Recursive Static
Multilevel

Dynamic
Two Level

[FIG7] Visual comparison of an RX detector.
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Java and MATLAB implementations of the described meth-
ods, together with simple example applications, are available 
at http://gici.uab.es.
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